

4 • MXDJ.COM 9 • 2004

What’s a Server Side Include?
A method to think about
by dan short

The Hugo Boss Academy
A case study
by thomas biedorf

Fireworks Flash Buttons
in a Flash
Two-way functionality adds zip
by tom green

Typography
...choose your words, carefully
by ron rockwell

The Division That Puts
Director to Work
...with Shockwave 3D
by andrew m. phelps

september 2004

18

22

44

30 xile
Cartoon
by louis f. cuffari

7 Logged In
The Flash
Video explosion
by greg stern

10 Letters
What you said
by you

12 Flex vs. JSP
A higher ROI
and better
impact
by peter ent

38 Snow Problem
The physics of Havok
by nik lever

52 Double-Clicking A Document
A professional projector makes
it easier
by tom rockwell

58 vanguard
How to Build a
www.fernando
-nieto.com
by Fernando Nieto

32

28

MXDJ.COM • 7

was recently looking at the winners

of the Clio Awards and the Cannes

Lions – annual awards that recog-

nize excellence in the advertising

industry. As I went through the winners

in the Internet category, several things

stood out prominently:

• An ad isn't always an ad. Many of the

winners are not ads at all, at least not

banner ads or pop-ups. Rather, they

are Web sites that blur the distinction

between advertising, product informa-

tion, and entertainment.

• Sales and marketing sites lead the

pack. Some of the most compelling

Flash sites I have ever come across are

being created for sales and marketing

purposes. As I visited the sites of the

agencies that won and examined their

portfolios, I saw that they had created

an amazing number of really com-

pelling sites.

• Flash and Flash video were in every

winning site. Every winner and runner-

up I saw was created with Flash. Quite

a number of them also made use of

Flash video.

The Hottest Trend:
Video on the Web

We have been tracking the progres-

sion of the use of Flash video on Web

sites for some time. Lately we have

noticed an explosion in the number of

sites that integrate video. Some are

straightforward implementations with

strictly video clips like Discovery

Broadband, while others use video as

just another element of their rich

interactive experience, like Vodafone

Future Vision.

A number of trends seem to be driv-

ing this explosion:

• Rich Internet advertising delivers. Rich

media advertising delivers results that

are orders of magnitude better than

almost anything else out there.

Increasingly this means integrating

video into rich ads.

• Broadband adoption is exploding. A

recent Pew Internet and American Life

study claimed that more than half of

American adults have broadband at

home or the office – and prices for

broadband service keep plummeting,

driving the trend further.

• Flash helps you get video on the Web.

Flash MX Professional 2004 provides a

complete feature set for integrating

video.

• Flash Player lets everyone see video on

the Web. Flash Player 7 improves per-

formance and offers progressive

downloading of video from Web

servers.

• Flash Player is ubiquitous. Flash Player

6, required to view Flash video, has

reached a 94% adoption level among

Web-connected computers – a full

30% better than any other video play-

er out there. Even the new Flash Player

7 is at a 67% adoption level.

• Flash Video Streaming Service makes

streaming a reality. Macromedia's

partnerships with Speedera Networks

and VitalStream – which provide cus-

tomers with huge, scalable Flash video

streaming services – make it possible

for large media companies like

Comcast to build out large Flash video

implementations.

What You Think
About Video

Because we are inherently interested

in the overall video trend, we ran a sur-

Group Publisher Jeremy Geelan
Art Director Louis F. Cuffari

EDITORIAL BOARD
Dreamweaver Editor
Dave McFarland
Flash Editor
Jesse Warden
Fireworks Editor
Kleanthis Economou
FreeHand Editor
Louis F. Cuffari
Ron Rockwell
ColdFusion Editor
Robert Diamond
Director Editor
James Newton

INTERNATIONAL ADVISORY BOARD
Jens Christian Brynildsen Norway,
David Hurrows UK, Joshua Davis USA,
Jon Gay USA, Craig Goodman USA,
Phillip Kerman USA, Danny Mavromatis USA,
Colin Moock Canada, Jesse Nieminen USA,
Gary Rosenzweig USA, John Tidwell USA

EDITORIAL
Executive Editors
Gail Schultz, 201 802-3043
gail@sys-con.com
Jamie Matusow, 201 802-3042
jamie@sys-con.com

Editor
Nancy Valentine, 201 802-3044
nancy@sys-con.com

Technical Editors
James Newton • Sarge Sargent

To submit a proposal for an article, go to
http://grids.sys-con.com/proposal.

Subscriptions
E-mail: subscribe@sys-con.com
U.S. Toll Free: 888 303-5282
International: 201 802-3012
Fax: 201 782-9600
Cover Price U.S. $5.99
U.S. $29.99 (12 issues/1 year)
Canada/Mexico: $49.99/year
International: $59.99/year
Credit Card, U.S. Banks or Money Orders
Back Issues: $12/each

Editorial and Advertising Offices
Postmaster: Send all address changes to:
SYS-CON Media
135 Chestnut Ridge Rd.
Montvale, NJ 07645

Worldwide Newsstand Distribution
Curtis Circulation Company, New Milford, NJ

List Rental Information
Kevin Collopy: 845 731-2684,
kevin.collopy@edithroman.com,
Frank Cipolla: 845 731-3832,
frank.cipolla@epostdirect.com

Promotional Reprints
Kristin Kuhnle, 201 802-3026
kristin@sys-con.com

Copyright © 2004
by SYS-CON Publications, Inc. All rights
reserved. No part of this publication may be
reproduced or transmitted in any form or by any
means, electronic or mechanical, including
photocopy or any information storage and
retrieval system, without written permission.

MX Developer’s Journal (ISSN#1546-2242)
is published monthly (12 times a year) by
SYS-CON Publications, Inc., 135 Chestnut
Ridge Road, Montvale, NJ 07645.

SYS-CON Media and SYS-CON Publications,
Inc., reserve the right to revise, republish, and
authorize its readers to use the articles submit-
ted for publication. MX and MX-based marks
are trademarks or registered trademarks of
Macromedia, in the United States and other
countries. SYS-CON Publications, Inc., is inde-
pendent of Macromedia. All brand and product
names used on these pages are trade names,
service marks or trademarks of their respective
companies.

vie
w

p
o

in
t

i

The Flash Video explosion
by greg stern

Logged In

“Rich media advertising delivers
results that are orders of magnitude

better than almost anything
else out there”

8 • MXDJ.COM

vi
e

w
p

o
in

t
SYS-CON MEDIA
President & CEO
Fuat Kircaali, 201 802-3001
fuat@sys-con.com
Vice President, Business Development
Grisha Davida, 201 802-3004
grisha@sys-con.com
Group Publisher
Jeremy Geelan, 201 802-3040
jeremy@sys-con.com

ADVERTISING
Senior Vice President, Sales & Marketing
Carmen Gonzalez, 201 802-3021
carmen@sys-con.com
Vice President, Sales & Marketing
Miles Silverman , 201 802-3029
miles@sys-con.com
Advertising Sales Director
Robyn Forma, 201 802-3022
robyn@sys-con.com
Advertising Sales Manager
Megan Mussa, 201 802-3023
megan@sys-con.com
Associate Sales Managers
Kristin Kuhnle, 201 802-3026
kristin@sys-con.com
Beth Jones, 201 802-3028
beth@sys-con.com
Dorothy Gil, 201 802-3024
dorothy@sys-con.com

PRODUCTION
Production Consultant
Jim Morgan, 201 802-3033
jim@sys-con.com
Lead Designer
Louis F. Cuffari, 201 802-3035
louis@sys-con.com
Art Director
Alex Botero, 201 802-3031
alex@sys-con.com
Associate Art Director
Richard Silverberg, 201 802-3036
richards@sys-con.com
Assistant Art Director
Tami Beatty, 201 802-3038
tami@sys-con.com

SYS-CON.COM
Vice President, Information Systems
Robert Diamond, 201 802-3051
robert@sys-con.com
Web Designers
Stephen Kilmurray, 201 802-3053
stephen@sys-con.com
Matthew Pollotta, 201 802-3054
matthew@sys-con.com
Online Editor
Martin Wezdecki 201 802-3045
martin@sys-con.com

ACCOUNTING
Financial Analyst
Joan LaRose, 201 802-3081
joan@sys-con.com
Accounts Payable
Betty White, 201 802-3002
betty@sys-con.com
Accounts Receivable
Shannon Rymsza, 201 802-3082
shannon@sys-con.com

EVENTS
President, SYS-CON Events
Grisha Davida, 201 802-3004
grisha@sys-con.com

CUSTOMER RELATIONS
Circulation Service Coordinators
Shelia Dickerson, 201 802-3082
shelia@sys-con.com
Edna Earle Russell, 201 802-3081
edna@sys-con.com
Linda Lipton, 201 802-3012
linda@sys-con.com
JDJ Store Manager
Brundila Staropoli, 201 802-3000
bruni@sys-con.com

vey in May asking what you are doing

now – and what you are planning to do –

with video. Frankly, the results surprised

us. According to you, video is hot!

• Nearly fifty percent of you are putting

video on Web sites today, and another

tenty-five percent plan to do so soon.

• Almost sixty percent of you told us

you simply want to put existing video

on your site.

• Eighty-five percent of you told us that

having full creative control over how

your video is integrated into your site

is important.

• Seventy-nine percent of you are inter-

ested in building interactive video

experiences by tying video to various

elements on your Web pages.

• Seventy-four percent of you are so

interested in building rich video expe-

riences that you are willing to learn

Flash in order to achieve that end.

Despite this being a heady time for

those of us who follow the trends in Flash

video, we do have some concerns. As

much as you want to use Flash video, you

may not have the tools and knowledge

to apply it effectively:

• Over Sixty-seven percent of you told us

that your understanding of Flash video

is poor.

• Eighty pecent of you told us that you

wanted to use embedded video in

Flash, which is the worst option for all

but niche cases.

Flash Video Kit:
The Easiest Way to Get
Video on the Web

We combined what we saw in the

market trends with what you told us

you were doing – and planning to

do – with Flash video and developed

the Flash Video Kit. Available through

September 30 when you purchase

Studio MX 2004 with Flash MX

Professional 2004, the Flash Video Kit

includes the following:

• Dreamweaver MX 2004 extension for

quickly adding Flash video (streaming

or progressive download) to your

HTML pages

• Special version of Sorenson Squeeze

to help you convert your video

resources easily into the Flash video

(FLV) format

Find out more about Studio MX 2004

with Flash MX Professional 2004.

Note: If you currently have Flash MX

Professional 2004, you can purchase

the Flash Video Kit separately through

the Macromedia Online Store – and get

a discount because you already own

Studio MX 2004 with Flash MX

Professional 2004.

Other Flash Video
Improvements

We worked with VitalStream to cre-

ate a new “lite” version of the Flash

Video Streaming Service, designed

especially to work with the Flash Video

Dreamweaver extension included in the

Flash Video Kit. While this isn't a free

subscription, it is reasonably priced

and comes with a 15-day free trial. It

is perfect for streaming all those

videos your boss has been after you

to put up on the company Web site.

To improve your knowledge and

understanding of Flash video, we have

made a commitment to improve the

educational materials supporting it.

We have completely revamped the

Flash Video Topic Center, adding

new tutorials and updating existing

ones.

This is just the beginning. In the

months ahead, you will see many new

tutorials and articles on Flash video on

the Macromedia Web site (www.macro-

media.com).

Finally, I’d like to invite you to visit our

latest iteration of the Flash Video Gallery,

which features some of the most com-

pelling customer examples of using Flash

video. See if you don't agree with me

that we are in the middle of a creative

explosion.

Greg Stern is the vice president of

developer relations at Macromedia

gstern@macromedia.com

“we have noticed an explosion in
the number of sites that integrate video”

9 • 2004

RoboDemo: Lynchpin of the
E-Learning Market

Charles E. Brown gives me a clear pic-

ture of what RoboDemo can do with the

e-learning demo. I have puchased the

product, but I would like to further know

about an add-on module that needs for

creating Flash editable FLA files. What is it

and where can I find to buy the men-

tioned module?

Diana Man; June 17, 2004

Layout Issues
Today, I received the first magazine

(Vol. 2, issue 6) in my new subscription and

I have a suggestion, for what it’s worth.

In the two articles I have read thus far,

the authors lament that they cannot

include valuable information or exam-

ples, using terms such as “due to

>space constraints...” and “...space does

not permit

me to show...” and “...I

do not have room to

reproduce here.”

This kind of space

restriction would make

perfect sense in any publi-

cation with size limitations, but

not when so much of the available edi-

tiorial space is wasted with double

spreads of huge non-important graph-

ics and teaser text.

For example, pages 14–15, 30–31,

34–35, 42–43, and 50–51 might make

your graphic designer feel all warm and

fuzzy, but seem like a waste to me when

what I want is more useful content, espe-

cially at the price of this magazine and

subscription.

I would suggest that the solution is

not to bar your writers from stating they

would show or tell something if they had

more room, but perhaps to tone down

the useless graphic design and give the

space saved to the writers who deliver

what we readers want.

Bill Wright

Multimedia Design Engineer Sr.

Lockheed Martin

validcode
Interesting article, but why bother to

rewrite code in the various default files

when you can set the same attributes,

such as using instead

of , in the Preferences section

under File?

Am I missing a point here? Seems like

making a mountain out of a mole hill.

Roger Lipera, Aug. 12, 2004

Creating
Games in
Macromedia Flash MX
2004

This is a well-written and interesting

article that shows a clear devotion to the

language. Makes even an “old, non-game

playing guy” like me wish I was born a lit-

tle later. There are shades of Teillhard’s

noogenesis in this article’s vision of the

computer’s potential to interconnect

people globally in a common event.

Bob Turcotte, Aug 16, 2004

Flash Virtuosos
I think this story is a testimony that

Flash will definitely get you noticed,

whether it’s by American design awards,

clients, etc. I think every designer would

love to use Flash, but at the same time,

they’re afraid that they will fall off the

face of search engines. Check out

www.graphicwise.com, the guys who

designed ADA and they have used a very

subtle Flash / HTML combo that adds to

the overall experience. Now I have to go

read my Flash MX users’ manual to see

how I can build an everlasting impression

... what pressure? :(

Martin, July 28, 2004

What you said

fe
e

d
b

ac
k

Letters

XML for
Web Designers

Leveraging Macromedia Support
Clear, concise, enjoyable, and neat summary of XML for

Web designers who use Dreamweaver and ColdFusion!

Colm Brazel; May 20, 2004

Our databases of inventory, orders, etc. sits on an iSeries

Server. Where can I find information on how to connect my

ColdFusion Web sites with these databases? I was thinking

that using XML might be an option? We currently have the

ColdFusion Enterprise MX sitting on an NT Server.

Ruby Pena; May 21, 2004

Ruby, you can find the information for accessing XML data

with ColdFusion in my book XML For Web Designers Using

Macromedia Studio MX 2004. You can also find more informa-

tion about accessing Databases as well as XML in Ben Forta’s

ColdFusion book. My book is for people who have no XML

experience and wish to learn the fundamentals. Macromedia’s

Web site also contains papers regarding accessing databases

with ColdFusion.

Kevin; May 22, 2004

10 • MXDJ.COM

12 • MXDJ.COM 9 • 2004

am a Web application developer.

That can mean a number of things

these days, but in my case, it means

I write code on both the client and

the server to make a complete “applica-

tion.” For many of us, the client-side code

is JSP – JavaServer Pages. Perhaps, like

me, you find JSP to be awkward with its

mixture of languages and styles. I also

find developing large applications to be

ever more complex as I add packages

such as Struts and Tiles, which are intend-

ed to make using JSP easier.

A few years ago I started to learn and

use Macromedia Flash because I read it

had the ability to send and receive infor-

mation via HTTP. I saw Flash as a way to

avoid using JSP to write Web applica-

tions. This turned out to be a good idea.

However, it quickly became obvious that

using Flash was not going to enable the

other members of my group to easily join

me in creating a new generation of appli-

cations. This is because Flash has a steep

learning curve. While most business-like

applications do not require animation,

you still have to learn the Flash IDE and

become familiar with

how application

development is done

with Flash. The Flash

MX release included a

set of predefined UI com-

ponents (such as combo-

boxes, lists, and buttons)

to speed application

development. Even

with the newest version,

Flash MX 2004, there is

still a learning curve issue.

For instance, to build a

respectable application, you

have to understand how Flash movies are

produced with their layers of movie clips

and timelines.

For a while I resigned myself to the

fact that my team members might have

to become Flash developers. I met some

resistance to this idea, but there didn’t

seem to be any alternatives. I had been

reading about Macromedia’s new prod-

uct, Flex, and for a while considered join-

ing the beta effort, but I was too busy

writing Flash applications to take part.

Once I got a trial copy of the

first release, Flex changed how I

view Web application development.

What Is Flex?
Macromedia Flex is a new product

designed for the development of enter-

prise-level applications that are delivered

to end users via Web browsers. Flex has a

much softer learning curve than Flash

and comes chock-full of user-interface

components. You develop your Flex

applications in much the same way you

develop JSP or HTML applications. Flex

solves the problems I had using Flash

while still delivering on its promise.

If you are familiar with JSP technolo-

gy, Flex will not seem too dissimilar. Just

as with JSP, server-side technologies are

employed to deliver information to the

end user; raw “source” files exist on a

server and are converted on-the-fly by

server-side components into a form pre-

sentable by a browser. But the similarities

between Flex and previous technologies

end there.

Macromedia Flex delivers Macromedia

Flash applications, not HTML, to the end-

user’s browser. The Flash player, a plug-in

to the Web browser, renders the Flash

application.

Figure 1 shows the Flex process in

detail. Notice how similar it is to how JSP

operates.

1. The developer creates Flex source files.

Flex vs. JSP

A higher ROI and better impact
by peter ent

i

fl
e

x

figure 1

figure 2

9 • 2004 MXDJ.COM • 13

These are text files that contain a flavor

of XML known as MXML. No special-

ized editors or environments are

required.

2. The end user enters the URL to this

MXML document into their browser’s

address bar.

3. The server, detecting the MXML exten-

sion, looks for a corresponding SWF

file. This is the Flash application.

Tip: If the SWF file does not exist, or if

the MXML file is more recent than the

SWF file, the Flex engine recompiles

the MXML into a new SWF file.

4. The SWF file is packaged

within a simple HTML wrap-

per (so the browser can dis-

play it) and sent back to the user’s

browser.

The browser loads the Flash player

plug-in and displays the Flash application.

As the user interacts with the Flash

application, calls are made from the Flash

application to remote objects – via either

Web services, XML documents, or

JavaBeans, residing on servers.

Flex produces “smart client” code.

Thin clients, such as Web browsers, place

most of the processing duties on the

server. Data validation (which is possible

with JavaScript on the client), calcula-

tions, localization, and such are best

done at the client’s computer and make

the most of the processing power there.

With Flex, the client can sort their data,

have it formatted to their liking, print

reports, and interact in new and mean-

ingful ways that were not possible with

previous Web technologies.

Examples

• Rather than simply list data values,

draw a graph. Allow the user to inter-

act with the graph by providing sliders

that control the bounds of the data.

• Allow the user to click on column

headings to sort the data.

• Include short movie clips of experts

explaining how tools work or connect

to media servers and chat live (video

and audio) with the expert.

• Use animated controls, such as dials,

gauges, and meters, to provide visual

feedback of real-time events (e.g.,

price-ticks).

The JSP Way
One of the issues I have with JSP is

that it is possible to have a single file that

contains a mixture of languages and pro-

gramming styles. For example:

• JSP tags: Refer to beans that execute

on the server, be they plain JavaBeans

or Enterprise JavaBeans. Some of these

tags may be specially written for a

project and are designed to mask the

underlying Java code from a Web page

designer.

• Java code: Translated into a servlet

that executes on the server, producing

HTML to be rendered by the client’s

browser.

• HTML: Rendered by the client’s

browser.

• JavaScript: Code executed by the

client’s browser (typically to do simple

data validation or modify the HTML

controls on the page).

• VBScript: Code executed by the

client’s browser (in a similar way to

how JavaScript is used).

Tip: JSPs must be tested on a variety of

browsers to make sure any JavaScript or

VBScript, as well as HTML, is compatible.

Developers often have to place a lot of con-

ditional code within the files to account for

the differences.

It is hard to have a clean separation of

client-side (or user interface) code from

server-side (or business) code. For exam-

ple, it is possible with JSP to write a

JavaBean that produces HTML in the

course of executing business logic.

A lot of effort has been put into mak-

ing JSP development more palatable.

Business logic developers can create tag

libraries for Web developers to use when

coding JSP files. This supposedly helps

separate the user interface code from the

business logic code.

One of the more common packages

developed for this purpose is Struts from

the Apache Software Foundation. Struts

is an attempt to apply some software

methodologies to the complexity of JSP

development. The business logic devel-

opers create a series of forms and actions

that process input from the JSPs and for-

ward the results to other JSPs; this is put

together with configuration files written

in XML.

In addition, for user interface code

reuse, there is the Tiles package, also

from Apache. This allows a Web page to

be broken into rectangular sections

(“tiles”) described by configuration files

and implemented with JSPs.

Nonetheless, with all of this effort you

can create pretzel-logic Web code that

can be difficult for project newcomers to

untangle.

The Flex Way
In contrast, all of the code within a

Flex MXML file is destined for the client. It

is not possible to write code, such as

opening database connections and pro-

cessing result sets that would wind up

running on the server.

There are several benefits to this:

• There is a clear separation of client-

side and server-side code as in a

Model-View-Controller architecture.

The user interface developer concen-

trates on presentation and interaction

with the end user.

• Server-side components of the appli-

cation are cleanly written without the

possibility of doing anything that

involves the client. With Flex, the sepa-

ration is more dramatic – your business

logic does nothing else but the busi-

ness operations.

• Flex comes with a large assortment of

helper classes to preserve this separa-

tion. For example, in a JSP application,

Peter Ent is a Web

application developer

specializing in Rich

Internet Applications.

He has more than 20

years of experience

ranging from key-

punches to wireless

PCs.

peter.ent@keaura.com

MXDJ
Section Editors

14 • MXDJ.COM 9 • 2004

code may format dates and times for

presentation to the user. In Flex, the

data arrives in the Flash application as

raw as possible and is formatted at the

client – with the ability to localize the

display (for numbers and dates).

Developing for Flex cleanly divides

the tasks of the team: business logic

developers create business code; user

interface developers create the user’s

experience. The two sides come together

to agree on the interfaces and data types,

but both are free to implement their

parts the best way they know how.

Sample Application
This is a small example to compare an

application using both JSP and Flex. Both

applications use the same JavaBeans on

the server.

JSP Example

In Listing 1, notice how the Java (in

red) is intermixed with the HTML. The

flow of HTML is broken by Java, making it

hard to read even in this simple example.

As programs grow more complex, some

of the Java code would be replaced by

specially created tags, but you can see

how easily this can become corrupted by

sloppy coding habits.

To make this program work, the “Get

Employee List” button (see Figure 2) sub-

mits the form data (the combo-box selec-

tion) by invoking itself. I find this self-ref-

erencing logic to be confusing, especially

on large projects.

Flex Example

The Flex code isn’t necessarily smaller

than the JSP, but you can see how the

user interface is laid out within the

Application container. The RemoteObject

declaration connects the application to

the server-side JavaBeans. When the “Get

Employee List” button is clicked, the

JavaBean’s method is invoked. The result

is dynamically bound to the DataGrid

using the dataProvider attribute. There is

no obvious procedural call here; the

implication is that all remote method

invocations are asynchronous and the

results bound to their destinations when

they arrive.

If you have ever written a JSP to pro-

duce a table that the end user can sort,

you know how complex this can be.

HTML provides no way to sort a table,

nor any way to indicate that a table has

been sorted.

The power of Flex lies in its ability to

create applications that can run independ-

ent of the server (see Figure 3). For

instance, to sort the data in a table the user

just clicks on a column heading. The Flex

DataGrid is more powerful than an HTML

table: it has the capacity to sort its data

without needing to contact the server.

Flex makes it easier for developers to

add features to applications, such as sort-

ing a table; with JSP, features like this

may take days to complete.

Comparison Chart

Table I compares JSP and Flex using

common development issues.

Not a Panacea
As much as I like Flex, there are times

when using JSP is appropriate. I’ve come

to think of Flex as an application builder

and JSP as a Web site builder. For exam-

ple, the Flash Player is not good at ren-

dering lots of HTML text as it must draw

each of the characters as vector graphics.

Macromedia has included in the Flex

package a JSP tag library that lets you

include your Flex application on a Web

page. Ironically, you can use the Flex tag

library to generate the MXML on-the-fly,

just as HTML would!

fig
u

re
 3

Dreamweaver
Dave McFarland

Author of Dreamweaver MX 2004: The Missing

Manual, Dave can be relied upon to bring
Dreamweaver MX to life for MXDJ readers with clari-

ty, authority, and good humor.

Flash
Jesse Warden

A multimedia engineer and Flash developer, Jesse
maintains a Flash blog at www.jessewarden.com
and says, referring to the MX product range, that

"Things are changing, opportunity is on the frontier,
a paradigm shift is occurring for Web design, Web

applications, et al."

Fireworks
Kleanthis Economou

A Web developer/software engineer since 1995,
now specializing in .NET Framework solutions,

Kleanthis is a contributing author of various
Fireworks publications and is the technical editor

of the Fireworks MX Bible. As an extension devel-
oper, he contributed two extensions to the latest

release of Fireworks.

FreeHand
Louis F. Cuffari

Cofounder and art director of Insomnia Creations
(www.insomniacreations.com), Louis has spent

most of his life as a studio artist, including mediums
from charcoal portraits to oil/acrylic on canvas. In

addition to studio art, he has been involved in several
motion picture projects in the facility of directing,
screenwriting, and art direction. Louis’s creative

works expand extensively into graphic design, and
he has expertise in both Web and print media. He is

deputy art director for SYS-CON Media and the
designer of MX Developer’s Journal.

Ron Rockwell
Illustrator, designer, author, and Team Macromedia

member, Ron Rockwell lives and works with his
wife, Yvonne, in the Pocono Mountains of

Pennsylvania. Ron is MXDJ’s FreeHand editor and
the author of FreeHand 10 f/x & Design, and coau-

thor of Studio MX Bible and the Digital Photography

Bible. He has Web sites at www.nidus-corp.com
and www.brainstormer.org.

ColdFusion
Robert Diamond

Vice president of information systems for
SYS-CON Media and editor-in-chief of

ColdFusion Developer’s Journal, Robert was
named one of the "Top thirty magazine industry
executives under the age of 30" in Folio maga-

zine’s November 2000 issue. He holds a BS
degree in information management and technology

from the School of Information Studies at
Syracuse University. www.robertdiamond.com

Director
James Newton

James Newton is the author of Director Shockwave

Studio Developer’s Guide and many of the behaviors
for the built-in Library Palette. He is a member of the

Director Advisory Council and chairman of the
Director Users’ Group, UK. His company, OpenSpark
Interactive, relies on Director to create workflow soft-

ware for the manufacturing industry.

16 • MXDJ.COM 9 • 2004

w
p

s

Task

DEVELOPMENT PRACTICES

SERVICE-ORIENTED
ARCHITECTURE

(SOA)

PORTABILITY

USER EXPERIENCE

LOOK AND FEEL

APPLICATION DEVELOPMENT

APPLICATION MAINTENANCE

DEBUGGING

PROFILING

JSP

Very difficult – Much discipline is
required to keep presentation sep-
arated from data and control. It is
easy to be sloppy with JSP and
combine database calls in with
data presentation.

While it is certainly possible to cre-
ate connections to Web services
from JSP applications, those con-
nections are done from the server –
since JSP code generates Java
servlets.

JSP developers must test their
applications on a variety of
browsers and platforms.
JavaScript, for example, does not
always execute the same, and is
not 100% compatible with all
browsers. This translates into more
QA time.

JSP offers the best that HTML can
provide. But you still need to
refresh pages to bring in new con-
tent. Sorting a table, for example, is
done on the server and sends a
new page.

Changes can be made via CSS
and on individual elements.

JSP developers can build pages in
a mixture of languages – HTML,
Java, JavaScript, and VBScript.
This can lead to confusion and
browser/OS compatibility prob-
lems.

Developers can create custom tags
that hide much of the server-side
code from the JSP editor.

Depending on how the JSPs were
coded, application maintenance
can be a nightmare. Pages that mix
languages or development tech-
niques can not only be hard to
debug, they can be hard to extend.

JSPs are notoriously difficult to
debug. Since the Java code that is
generated bears little relationship
to the source files, find and fixing
problems is a daunting task.

Not readily available.

Flex

Very easy – Flex follows the MVC
paradigm. You only create the
client-side application with Flex;
your server-side code remains
completely separate.

Very easy – Web services, as well
as other remote procedure call
styles, are built into Flex.

Flex generates Flash applications
that run on over 98% of the world’s
desktops. This compatibility with
browsers and operating systems
means less time in QA.

Flex offers the user a richer experi-
ence. Application parts can flow
seamlessly together. Multimedia
and other innovative technologies
can easily be incorporated.

Changes can made via CSS as well
as Flex style sheets. Changes can
be applied to individual elements,
component classes, or to the entire
application. Further, components
can be reskinned for an entirely
new look.

Flex developers use MXML tags
and ActionScript. Any text editor
can be used or, in the near future,
an IDE from Macromedia specifi-
cally for Flex.

Custom components can extend
existing Flex components or new
ones can be created from scratch.

Since Flex is XML-based with a
single development language, and
written solely for client-side execu-
tion, there are less development
and maintenance issues.

Flex comes with the Flash Debug
player – a UI that lets you debug the
code in real time, but also lets you
monitor the data traffic between
the client and servers.

Flex comes with a profiler that
enables you to discover perform-
ance bottlenecks.

li
st

in
g

 1
listin

g
 2

9 • 2004 MXDJ.COM • 17

<HTML>

<HEAD>

<%@ page language="java" contentType="text/html; charset=ISO-8859-

1" %>

<TITLE>Employee List</TITLE>

</HEAD>

<BODY>

<jsp:useBean id="empBean" scope="session"

class="samples.explorer.EmployeeManager" />

<%

String emplistName = request.getParameter("list");

Object results[] = null;

if(emplistName != null) {

results = empBean.getList(emplistName);

}

%>

<TABLE>

<TR><TD>

<FORM name="emplist" action="employeepanel.jsp">

Select a department:

<SELECT name="list">

<OPTION VALUE="ENG">Engineering</OPTION>

<OPTION VALUE="PM">Product Management</OPTION>

<OPTION VALUE="MKT">Marketing</OPTION>

</SELECT>

<INPUT TYPE="SUBMIT" VALUE="Get Employee List" />

</FORM>

</TD></TR>

<TR><TD>

<TABLE BORDER="1" CELLSPACING="4" CELLPADDING="2">

<% if(results != null) {

%><TR><TH>Name</TH><TH>Phone</TH><TH>Email</TH><%

for(int i=0; i < results.length; i++) {

samples.explorer.Employee e =

(samples.explorer.Employee)results[i];

%>

<TR>

<TD><%=e.getName() %></TD>

<TD><%=e.getPhone() %></TD>

<TD><%=e.getEmail() %></TD>

</TR>

<% }

}

%>

</TABLE>

</TD></TR>

</TABLE>

</BODY>

</HTML>

<?xml version="1.0" encoding="utf-8"?>

<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

verticalGap="10"

pageTitle=”Employee List” >

<mx:RemoteObject id="employeeRO" encoding="AMF"

source="samples.explorer.EmployeeManager"

fault="alert(event.fault.faultstring, 'Error')">

<mx:method name="getList"/>

</mx:RemoteObject>

<mx:HBox>

<mx:Label text="Select a department:"/>

<mx:ComboBox id="dept" width="150">

<mx:dataProvider>

<mx:Array>

<mx:Object label="Engineering" data="ENG"/>

<mx:Object label="Product Management" data="PM"/>

<mx:Object label="Marketing" data="MKT"/>

</mx:Array>

</mx:dataProvider>

</mx:ComboBox>

<mx:Button label="Get Employee List"

click="employeeRO.getList(dept.selectedItem.data)"/>

</mx:HBox>

<mx:DataGrid dataProvider="{employeeRO.getList.result}"

widthFlex="1">

<mx:columns>

<mx:Array>

<mx:DataGridColumn columnName="name" headerText="Name"/>

<mx:DataGridColumn columnName="phone" headerText="Phone"/>

<mx:DataGridColumn columnName="email" headerText="Email"/>

</mx:Array>

</mx:columns>

</mx:DataGrid>

</mx:Application>

Keep in mind, then, that Flex and JSP

can happily coexist.

Conclusion
While JSPs will continue to be used,

the impact that applications developed

with Flex can have is greater. Not only

does the user have a better and more

productive experience, so does the

application developer. By allowing serv-

er-side application developers to create

the business logic, it frees them from

being client-side developers and makes

their jobs easier and more disciplined.

Likewise, user-interface developers can

concentrate on bringing a more mean-

ingful and richer application to the end

user.

Consider also that JSPs were once

the “new technology” and were, in fact,

created to fill the need of bringing

dynamic content to the Web. I feel Flex

is the next step in the evolution path of

Web-based applications. Flex extends

this path by bringing richer applications

to the Web in a way that is easy to devel-

op and maintain.

The return on investment with Flex is

higher than with JSP (and Java applets)

because more time is spent developing

useful applications than is spent resolv-

ing compatibility issues.

Resources
For examples of Flex applications, visit

my Web site at www.keaura.com/flex.

Here are some other references for further

reading.

• Macromedia Flex Product Description:

http://macromedia.com/software/

flex

• Macromedia Flash Player Distribution:

www.macromedia.com/software/

player_census/flashplayer/

• Best practices for building Flex

applications: http://macromedia.com/

devnet/flex/best_practices.html

• Flex Performance Brief: A Comparison

of Flex and JavaServer Pages

Applications. May 2004. www.

macromedia.com/devnet/flex/

articles/performance_brief.html?

trackingid=devcenterupdate_email_

060204

 include?

As sites become larger and larger, site management
becomes a larger worry. How do I keep a 2000-page
site updated? How do I keep navigation elements
consistent? How do I manage to change the nav on a
2000-page site without losing all my hair? There are a
few methods in Dreamweaver that accomplish this:
• Templates
• Library Items
• Server Side Includes (SSIs)

by dan short

server side
what’s a

A method to think about

18 • MXDJ.COM 9 • 2004

9 • 2004 MXDJ.COM • 19

Templates and

Library Items can

be used with

any type of serv-

er, and SSIs can

as well, provided

your host has

enabled the ability.

In order to use SSIs,

your page must have

an extension that will

be processed by the

server, .html usually won’t

do the trick. If you’re on a Unix box, it

will need to be .shtml, or if you’re using

some other server language (regardless

of server type), it would need to be .php,

.cfm, .jsp, .asp, or .aspx, or any other

server language you may be using. The

syntax for calling the SSI will depend on

which server language you’re using.

We’re going to be using the ASP

VBScript syntax since that’s one of the

more common scripting languages. If

you’re using another server language,

here's the necessary syntax:

ASP and .NET:

<!-- #include file="include.asp" -->

ColdFusion:

<cfinclude template="include.cfm">

PHP

<?php require_once('include.php'); ?>

JSP

<%@include file="include.jsp" %>

Notice that I’ve added the appropri-

ate server language extension to the

includes. This ensures that the include

would be processed by the server if a

user somehow found out the include

name and put it directly into their brows-

er. If you’re putting server side code in

your includes, you should make sure

they’re always processed by the server.

Pros and Cons
There are a few advantages/disad-

vantages to each of these methods. I

personally prefer includes simply for

their ease of use and the ability to quick-

ly update an entire site by changing just

one file.

Templates

Pros:

• No server-side action needed.

• Can be applied to every page in a site.

• With new MX templates, you can

include optional and repeating regions

as well as nested templates, which

allows a lot of flexibility for customiz-

ing the design and content of your

Web pages.

Cons:

• Changes are physically made to every

page based on a template.

• Updating one item requires every

page to be updated and uploaded (a

huge hassle on a large site).

• Templates are Dreamweaver specific. If

you edit the page in an external editor

you run the risk of destroying the tem-

plate markup code.

Library Items

Pros:

• No server-side action needed.

• Can be applied to every page in a site.

• Can be applied to any part of page.

Cons:

• Changes are physically made to every

page that includes a library item.

• Updating one item requires every

page to be updated and uploaded (a

huge hassle on a large site).

• Libraries are Dreamweaver specific. If

you edit the page in an external editor

you run the risk of destroying the

library code.

Server Side Includes

Pros:

• Change one file and every file that

uses that include is instantly updated.

• Every server language supports them

in one form or another.

• Easier to reuse code pieces.

Cons:

• Server has to parse each page that

uses includes, which can slow down

your server and make your site feel

slower.

How Do They Work?
Server-side Includes are just that – a

way for the server to include one file

inside another before the page is sent to

the browser. This allows you to include

fi
g

u
re

 1

20 • MXDJ.COM 9 • 2004

page elements in an external file and

have them inserted into the page called

by the user. Listing 1 is a very simple

example using three files. The

content.asp page is what the user is view-

ing. It calls two includes (inc_top.asp and

inc_bottom.asp) in order to wrap the

content in a table.

When the viewer pulls up www.your-

domain.com/content.asp in their brows-

er, the server parses content.asp and

includes our two include files and sends

the resulting page to the browser. If the

user views the source code of

content.asp, they’ll see Listing 2.

The server has replaced the two

include calls with the content of those

files, just as it would any other server-side

code (notice the LANGUAGE attribute

isn’t there either). Let’s take this a little

further in the next section.

Putting Your Includes
Together

One way to think of an SSI is as serv-

er-side copy/paste. The server takes the

content of your include and pastes it in

place of the SSI call. This allows you to

create extremely complex layouts using

SSI. On Dwfaq.com, we use a large num-

ber of server-side includes for every page.

Listing 3 is an example of a page on

DWfaq.com.

Notice that we have includes for meta

tags; CSS; stuff before the body tag

(pre_body.asp), which includes JavaScript

and CSS calls; and then a top and bottom

include. All of the DWfaq headers, includ-

ing the flyout menus and the footer with

its complex table structures are located in

includes. Changing the tutorials flyout in

our menu is just a matter of changing

inc_top.asp. We even put the <body> tag

inside an SSI since we’re not going to

have different JavaScript actions on dif-

ferent pages.

How to Build Your SSIs
Putting together a complex SSI lay-

out really isn’t all that difficult. Just build

your page in Dreamweaver and then

cut/paste the pieces into the SSIs and

replace them with the necessary SSI

calls. Let’s create an example using a

header, left hand nav, right hand nav,

and a footer. We’re going to be using

one table to lay out the page.

Create a new ASP VBscript file by

clicking File > New and choose Dynamic

Page, ASP VBScript. Save the file as con-

tent.asp so our include paths will be cor-

rect once we’ve added them in.

Create two more ASP VBScript files

and name them inc_top.asp and inc_bot-

tom.asp. Delete everything on the page,

including <html>, <head>, and <body>

tags. The two files should be completely

empty.

Add a three-column, three-row

table to your page, and merge all

three columns of the first and last row.

Your finished table should look like

Figure 1.

Fill in some content as placeholders,

and dress up your table a bit. In Figure 2

we’ve added some links on the left and a

news story on the right, with our content

in the center. I’ve added a few styles and

made quite the piece of masterful site

design.

Now we need to look at the code for

our table and decide how to chop it up.

What should be put into includes, and

what should be left on the page?

Anything that has to change from page

to page should be left out of the

includes. In our example, we want every-

thing but the middle content to be the

same on every page. I’ve commented

the code in Listing 4 to set where I’m

going to chop up the page. I decided to

put the </head> and <body> tags inside

my top include because every page will

have the same scripts, backgrounds, etc.

This isn’t necessary if you’re going to

have different settings on each page,

and could be detrimental if you need to

apply any Behaviors to your page in

Dreamweaver.

Next, I’m going to cut everything

from <!-- Start Bottom Include --> to <!--

Stop Bottom Include --> and place it in

inc_bottom.asp. inc_bottom.asp so it

now looks like Listing 5.

Now, replace the comment tags in

content.asp with the include calls as in

Listing 6.

Save all three files, upload, and view

content.asp in your browser. If you view

source code from the Web browser, it

should look exactly as it did when we

first built the page in Dreamweaver.

Fortunately, Dreamweaver is “SSI-

aware”, so it displays the page in

design view exactly as we originally

designed it. Viewing the page in

Dreamweaver’s design window should

also look exactly as we originally

designed it. You won’t be able to eit

those included files from content.asp

(you’ll have to open them separately)

but you’ll be able to work on the

page as if there were no includes.

Dan Short runs a successful Web

development company, Web Shorts

Site Design (www.web-shorts.com/).

He is also the lead developer for

Cartweaver (www.cartweaver.com).

Dan’s primary focus is on dynamic

development with both ASP and

ColdFusion. He also helps maintain

several HTML and Dreamweaver

reference sites, including the

Dreamweaver FAQ (www.dwfaq.com)

and has written articles for several

resource sites, recorded several

Dreamweaver-related movie titles for

Lynda.com, and is a coauthor of

Dreamweaver MX Magic 2004,

Dreamweaver MX Bible (Wiley), and

Dreamweaver MX: Advanced ASP Web

Development (Glasshaus).

dan@web-shorts.com

fi
g

u
re

 2

listin
g

 5
listin

g
 6

li
st

in
g

 1
li
st

in
g

 2
li
st

in
g

 3
li
st

in
g

 4

9 • 2004 MXDJ.COM • 21

content.asp:

<%@LANGUAGE="VBSCRIPT" CODEPAGE="1252"%>

<html>

<head><title>My Content Page</title></head>

<body>

<!-- #include file="inc_top.asp" -->

My content goes here.

<!-- #include file="inc_bottom.asp" -->

</body>

</html>

inc_top.asp:

<table>

<tr>

<td>

inc_bottom.asp:

</td>

</tr>

</table>

Listing 2

<html>

<head>

<title>My Content Page</title>

</head>

<body>

<table>

<tr>

<td>

My content goes here.

</td>

</tr>

</table>

</body>

</html>

Listing 3

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<html>

<head>

<title>My Page Title</title>

<!--#include file="metas.asp" -->

<!--#include file="inc_css.asp" -->

<!--#include file="pre_body.asp" -->

</head>

<!--#include file="inc_top.asp" -->

All the page content

<!--#include file="inc_bottom.asp" -->

Listing 4

<html>

<head>

<title>MySite.com - Your destination for stuff</title>

<!-- Start Top Include -->

</head>

<body>

<table id="#tableLayout">

<tr>

<td colspan="3">

<h1>MySite.com - Your destination for stuff</h1>

</td>

</tr>

<tr valign="top">

<td nowrap class="altcolor">

Cool Stuff

Alright Stuff

Rockin' Stuff

Fair to middlin' Stuff

</td>

<td>

<!-- Stop Top Include -->

<p>This is all the content about how awesome cool stuff is.

If you don't have stuff, please contact us today so we can sell you

lots of stuff that you may or may not every use.</p>

<p>Some lorem ipsume latin shtuff goes here. </p>

<!-- Start Bottom Include -->

</td>

<td><h2>Da News</h2>

<p>MySite.com - your destination for stuff, has been featured

in numerous magazines as "the" destination for your

stuff.</p>

</td>

<td>

</tr>

<tr align="center">

<td colspan="3" class="fineprint">Copyright © MySite.com,

1964-2033</td>

</tr>

</table>

</body>

</html>

<!-- Stop Bottom Include -->

Next, I'm going to cut everything from <!-- Start Top Include -->

to <!-- Stop Top Include --> and place it in inc_top.asp.

inc_top.asp now looks like this:

</head>

<body>

<table id="#tableLayout">

<tr>

<td colspan="3">

<h1>MySite.com - Your destination for stuff</h1>

</td>

</tr>

<tr valign="top">

<td nowrap class="altcolor">

Cool Stuff

Alright Stuff

Rockin' Stuff

Fair to middlin' Stuff

</td>

<td>

Listing 5

</td>

<td><h2>Da News</h2>

<p>MySite.com - your destination for stuff, has been featured

in numerous magazines as "the" destination for your

stuff.</p></td>

<td>

</tr>

<tr align="center">

<td colspan="3" class="fineprint">Copyright © MySite.com,

1964-2033</td>

</tr>

</table>

</body>

</html>

Listing 6

<html>

<head>

<title>MySite.com - Your destination for stuff</title>

<!--#include file="inc_top.asp"-->

<p>This is all the content about how awesome cool stuff is. If you

don't have stuff, please contact us today so we can sell you lots

of stuff that you may or may not every use.</p>

<p>Some lorem ipsume latin shtuff goes here. </p>

<!--#include file="inc_bottom.asp"-->

CD-ROM WON THE COVETED

GRAND AWARD FOR BEST

APPLICATION AT THE NEW

YORK FESTIVALS 2003

COMPETITION. THE

FRANKFURT-BASED AGENCY

BIEDERMANN UND

BRANDSTIFT DESIGNED A

TRAINING CD-ROM FOR HUGO

SHOP EMPLOYEES WHOSE

MAIN CONTENT WAS CREATED

IN FLASH. THE APPLICATION’S

SKELETON WAS DEVELOPED

BY BYTES IN MOTION USING

DIRECTOR MX.

THE ,

ACADEMY: CD-ROM

FALL/WINTER 2003”

by thomas biedorf

 A
 C

A
S

E
 S

T
U

D
Y:

 U
S

IN
G

 D
IR

E
C

T
O

R
 A

N
D

 F
LA

S
H

 T
O

 C
R

E
A

T
E

 A
N

 A
W

A
R

D
-W

IN
N

IN
G

 M
U

LT
IM

E
D

IA
 A

P
P

LI
C

A
T

IO
N

“

T R A I N I N GA GI I NN

22 • MXDJ.COM 9 • 2004

Director allowed us to meet HUGO

BOSS’s quality requirements as far as the

application was concerned, and Flash MX

enabled the designers to create the con-

tent according to specifications. The high

degree of integration between these two

Macromedia products yielded a relatively

smooth workflow since Flash profession-

als who aren’t familiar with Director, and

Director professionals who aren’t familiar

with Flash, can cooperate quite easily.

Content
The training CD-ROM was used to

train HUGO shop employees worldwide.

The content covered company philoso-

phy and marketing as well as the current

collections and merchandising products.

A shop overview and interactive group

games completed the CD-ROM, which

was produced as part of a two-year

series. The CD-ROM was presented by the

shop owner (moderator) using a video

projector. The employees formed three

groups that had to compete against each

other in the interactive games (see Figure

1). A comprehensive printed training

guide provided the shop owner with

complete information about the applica-

tion. The total playing time of individual

chapters and the total training time were

tracked. This data, together with general

assessment feedback, could be e-mailed

to headquarters.

Technical and Design
Requirements

HUGO BOSS’s design requirements

are highly sophisticated. This is reflected

in their collections and their shops as

well as in the design of their print materi-

als, Web sites, and CD-ROM applications.

It was known from the outset that

Biedermann und Brandstift, a veteran

service provider to HUGO BOSS, would

not only develop the concept but also

design the content. Flash was the pro-

gram of choice since the designers were

intimately familiar with its design tools

and integrated interactivity. Its vector-

based approach allowed them to create

high-quality visuals that matched those

seen on the HUGO Web site. The concept

consisted of 14 chapters and 33 subchap-

ters, which, in turn, encompassed 1–10

steps. The application needed to be bilin-

gual (German/English) and have a resolu-

tion of 1024x768 pixels. The huge

amount of data resulting from the many

images and extensive chapters made it

difficult to run the entire application in

Flash Player. When it came to integrating

large videos at the stated resolution at a

rate of 25 frames per second, the limits of

what is possible in Flash MX were finally

reached. It was at this point that Director

and bytes in motion came into play.

Director and Video
Video playback in Director is highly

efficient. Director streams video data

directly from the CD-ROM and does not

need to load the entire video into memo-

ry as used to be the case with Flash until

recently.

The Apple QuickTime media player is

pre-installed at HUGO BOSS. The integra-

tion between Director and QuickTime is

as old as Director itself and posed no

great challenge on the playback side. To

meet HUGO BOSS’s high standards of

quality, we decided, after a few trial runs,

to go with the Sorenson 2 Pro codec,

which is capable of scaling video in high

quality without a noticeable stair-step

effect. We used Discreet Mediacleaner’s

2-pass process to encode the videos at

half their final resolution (512x384 pixel)

at a variable bit rate using 25 frames and

an average of 165 KB per second, and

integrated them into Director at 200%.

Sorenson 2 scales video using brightness

and contrast vectors (see Figure 2). This

yields a beautiful, smooth image even at

twice the resolution. Thanks to the seam-

less integration between QuickTime and

Director, Director is able to play these

videos smoothly and with optimal sound.

Thanks to the low data rate, we were

able to burn the entire application,

including about 30 minutes of video, to

CD-ROM without using all the space

available. The videos took up about 269

MB.

Director and Flash
Integrating the Flash files in Director

posed a much greater challenge. On the

one hand, we needed to achieve the

highest frame rate possible, and on the

other we were faced with known prob-

lems in conjunction with integrating very

large Flash files in Director. However, after

a number of tests we were able to

achieve our goal (see Figure 3).

The Flash members were added

“direct to stage” using the normal frame

rate and “auto-size” scaling. Director itself

9 • 2004 MXDJ.COM • 23

fig
u

re
 1

fi
g

u
re

 3

ran at twice the Flash member’s frame

rate (24 frames per second). This allowed

us to achieve the best playback behavior

possible. To make the application run as

smoothly as possible, we embedded

almost all of the Flash members com-

pletely into Director and split the applica-

tion into several Director movies (see

Figure 4).

However, some Flash movies (SWF

files larger than 12MB) caused Director to

crash. Since these movies required no

interactivity during playback, we were

able to open them using QuickTime

Player and then save the SWF files as

QuickTime movies (.mov). Although these

QuickTime movies contained only a Flash

track, they played extremely efficiently

using the Director QuickTime engine – at

a rate never achieved in Director with

Flash members (24 frames/second at

1024x768 pixels, without jaggies) (see

Figure 5).

Navigation
Since we now had Director movies

with a lot of individual Flash members, we

needed to program the entire navigation

in Director. This included switching the

mouse during button rollovers in a Flash

member and detecting returns from a

Flash page to the previous one. This

required jumping to the last frame in the

Flash member. To switch the mouse, we

relied on the mouseoverbutton command:

if sprite(me.spritenum).mouseoverbut-

ton = true and pStater = 0 then

cursor 280

pStater = 1

end if

if sprite(me.spritenum).mouseoverbut-

ton = false and pStater = 1 then

cursor -1

pStater = 0

end if

We used the pStater property to

ensure that the event occurred only once;

otherwise the mouse would have flick-

ered too much.

To detect a return to the previous

page, we needed to determine the Flash

member’s last frame. We had asked the

Flash designers to mark the last step

(which could well occur in the middle of

an animation) using a label called “ende.”

What follows is a simplified example:

24 • MXDJ.COM 9 • 2004

fi
g

u
re

 2

fig
u

re
 4

listin
g

 1

9 • 2004 MXDJ.COM • 25

x =

sprite(me.spritenum).findLabel(“ende”)

sprite(me.spritenum).frame = x

Time Tracking
We were able to program time track-

ing, which was needed for each subchap-

ter, each main chapter, and the entire

application, right in Director. We also had

to allow for jumps so users could briefly

go elsewhere, for example to repeat

something in a different location. For this

purpose, we introduced a global proper-

ty list called gSavelist which, among

other things, contained the chapters.

Each main chapter contained its own list

of subchapters and values that tracked

the time in milliseconds as well as their

totals (see Figure 6).

Later, during evaluation, we were

able to use the values for any number of

calculations to track the various time

parameters.

Controlling Flash Members
from Director

Elsewhere in the application, we

needed to transfer the text entered in a

Flash member to another Flash member

and to reposition various design ele-

ments of a Flash member (see Figure 7).

The Flash and Director programmers

involved in this project worked hand-in-

hand to solve these issues since in

Director it is best to control movie clips

from a Flash member.

For simplicity’s sake, we named these

movie clips button1 through button10 so

from a repeat loop in Director we were

able to set their positions and enter text

(see Listing 1).

In Flash, the #posX and #posY proper-

ties set the position of movie clip in the

Flash member’s rect. While using setVariable

we were able to change the text variables

button1.btext through button10.btext.

repeat with x = 1 to 10

sprite(me.spritenum).setFlashprope

rty(“button”&x,#posX,pButtonPositi

on.pos[x].loch)

sprite(me.spritenum).setFlashprope

rty(“button”&x,#posY,pButtonPositi

on.pos[x].locv)

sprite(me.spritenum).setVariable(“

button”&x&”.btext”,pButtonPosition

.text[x])

end repeat

fi
g

u
re

 7
fi

g
u

re
 6

fi
g

u
re

 5

26 • MXDJ.COM 9 • 2004

Summary
Director and Flash are a strong team.

This combination is unmatched when it

comes to highly interactive multimedia

applications that include sophisticated

visuals. The award we received is proof of

this. Another great advantage: it’s easy

and economical to publish this content

on the Web. Working around a few tricky

spots, it’s possible to create robust,

unique user experiences that make a last-

ing impression.

Links
• Biedermann und Brandstift GmbH:

www.biedermannundbrandstift.com

• bytes in motion GmbH:

www.bytesinmotion.de

• New York Festivals awards page:

www.newyorkfestivals.com/main.

taf?erube_fh=nyf&nyf.submit.

WinnerDetail=true&nyf.Winner

ItemID=209787

• CD-ROM main menu as a Web-based

Flash movie: www.biedermannund-

brandstift.com/apps/boss_nav.html

• HUGO BOSS: www.hugoboss.com

Thomas Biedorf has been working

with Director since 1991 (version 3).

In 2000, he cofounded bytes in

motion GmbH where he is currently

the managing partner. bytes in motion

develops highly efficient multimedia

applications for online and offline use.

biedorf@bytesinmotion.de

 It never ceases to amaze

me, whenever I am

speaking at a conference

or hanging out with the

“Flashies” at various user

groups, to hear them tell me

how they create their really

“cool” buttons in that

behemoth from a company

named after a building

material. When I ask them if

they have the Studio, the

answer is an inevitable: “Well

‘duh,’ of course I do!”

Somehow, it seems, the

message still hasn’t gotten out

that Fireworks MX 2004 is one

serious “button creating

behemoth” when it comes to Flash.

by tom green

28 • MXDJ.COM 9 • 2004

9 • 2004 MXDJ.COM • 29

Here’s how to create a button in

Fireworks MX 2004 that also functions as

a button in Flash MX 2004.

A Simple 3-State Button
1. Open a new Fireworks MX 2004 doc-

ument.

2. Select the rounded rectangle tool

from the Fireworks Tool bar and

draw a rectangle that is 100 pixels

wide by 40 pixels high. You can also

enter these dimensions in the

Fireworks Property inspector.

3. Select the object and, using the

Property inspector, change the Fill

color of the button. I used #CCCC99.

4. Select the text tool and add some

text to the button. Group the text

and the button object (see Figure 1).

5. Select the object on the canvas and

press the F8 key which opens the

Symbol Properties box (see Figure

2). Coincidentally, this is the same

key you would press in Flash to con-

vert a selected object to a Symbol.

6. Name the symbol and select the

“Button” property. Click OK.

The button will now appear

behind a green Slice Guide (see

Figure 3). Don’t worry about it, but it

is critical to this technique so don’t

remove it.

7. Double-click the target on the Slice

Guide to open the Button Symbol

Editor.

8. Click the “Up” tab, select both

objects, and select Effects>Bevel and

Emboss> Inner Bevel on the

Property inspector.

9. Change the flatness setting from 10

to 5 as shown in Figure 4.

10. Click the Over tab and when the

blank screen appears, click the “Copy

Up Graphic” button. Select the

object in this window, and click the

“i” symbol beside the Live Effect in

the Property inspector. Select Inset

from the button presets at the bot-

tom of the Inner Bevel dialog box

that will open (see Figure 5).

11. Repeat the previous step for the

“Down” button, but select “Inverted”

from the button presets. Click “Done”

when you are finished. You will

return to the Fireworks canvas.

Though I am showing a basic button

here, don’t forget you can apply textures

and other effects to the button. If you

have Alien Skin’s “Eye Candy 4000” or

“Splat” you can create some amazing

effects, such as a button that looks like a

“squashed bottle cap.” Apply a texture to

a circle, apply an Inner bevel, and then

apply Splat’s Edges filter and Eye Candy’s

Shadowlab. The techniques are the same,

but the creativity I’ll leave to you.

Fireworks-to-Flash in a
Flash

Importing Fireworks images into Flash

MX 2004 can be somewhat complicated

and requires a number of decisions. It

doesn’t have to be, though. You can “end

run” the entire process and still have the

same results. Here’s how:

1. Leave Fireworks open but open a new

Flash document.

2. Return to Fireworks.

3. Click and drag the green Slice Guide

from Fireworks onto the Flash stage.

fi
g

u
re

 1

fi
g

u
re

 2

fi
g

u
re

 3
fi

g
u

re
 4

fi
g

u
re

 5

“Fireworks MX 2004
is one serious ‘button
creating behemoth’”

xile written & illustrated by louis f. cuffari 10

30 • MXDJ.COM 8 • 2004

When you see a dotted outline of the

button beside your mouse on the

Flash stage, release the mouse.

4. The “button” will appear on the Flash

stage. In actual fact it isn’t the “button”.

It is a flattened bitmap of the button.

5. Open the Flash Library and you will

see:

– Six bitmaps – Three for the button

shape and three for the text, and

– One folder named Fireworks

Objects containing a Movie Clip

and a Button Symbol

6. Delete the bitmap on the Flash stage

and feel free to delete the Movie Clip

in the Fireworks Objects Folder. You

don’t need either one (see Figure 6).

7. Drag the Button symbol onto the Flash

stage and, if you select Control>

Enable Simple buttons, you will discov-

er your Fireworks button functions

exactly like a Flash button.

For those of you wondering if six

bitmaps is a lot of baggage to be bring-

ing into Flash, you can cut it back. Simply

create the three-buttons states in

Fireworks and then, before leaving the

Fireworks Button editor, click the state

tab, select the button, and “Flatten” it by

selecting “Flatten Selection” from the

Fireworks Layer Options pop-down

menu. When you drop the Layer slice into

Flash, you will get three bitmaps – one

for each state – instead of six.

The movie clip arrives because Flash

automatically creates one for .png images

– the native Fireworks file format-

brought into Flash.

Summary
There you have it. Create the button,

drag the Fireworks Slice Guide into Flash

and the button is automatically added to

the Flash Library. That’s how you build

Flash buttons in Fireworks.

You don’t have to be conservative.

Figure 7 is a Fireworks button that

squashes the image when the cursor rolls

over it.

Teacher, author, chief cook and bottle

washer. Instructor at Humber College’s

School of Media Studies in Toronto,

Tom Green is also the author of Building

Web Sites with Macromedia Studio MX

and Building Dynamic Web Sites with

Macromedia Studio MX 2004. Both are

published by New Riders.

tgreen17@cogeco.ca

fi
g

u
re

 6
fi

g
u

re
 7

“Don’t forget you can
apply textures and other
effects to the button”

32 • MXDJ.COM 9 • 2004

9 • 2004 MXDJ.COM • 33

T
ype, text, copy,

words, and (ugh!)

even print – what-

ever you call it, it’s

the art and sci-

ence of typogra-

phy. FreeHand has

an extremely robust text-handling fea-

ture set. It’s easy to learn, and quite flexi-

ble and tough enough for anything from

business cards to Web pages to small

newsletters.

FreeHand’s Text Handling
When Macromedia FreeHand and

Adobe Illustrator were first introduced, I

chose FreeHand simply because of its

stronger text handling. The gap has nar-

rowed over the last 15 years or so, but I’m

still happier with the way FreeHand han-

dles text. Here’s how it works:

Text Block Basics

There are two ways to get text into

FreeHand: import it or input it. Importing

is as simple as choosing File > Import and

navigating to the text file. The only

necessity is that the text be in Rich Text

Format (RTF). I use Microsoft Word for my

major text-inputting software, and after

I’ve finished the typing, it’s a matter of

saving it as an RTF file. Other forms of

text cannot be imported; however, you

can copy-and-paste or drag-and-drop

text from many programs. For instance,

text copied or dragged from Word retains

its formatting, but Adobe InDesign brings

in the words and loses all formatting.

The other way to get text into

FreeHand is to enter it yourself. The first

time you attempt to use the Text tool

may be a bit intimidating, but you’ll soon

get over any anxiety. To begin with, when

you click the Text tool on the document,

you can start typing right away. By

default, FreeHand creates what is called

an Auto-expanding text block. That

means that you can type from now until

your fingers are tired, and the line of text

will continue until you press Enter or

Return, starting a new line. If you have a

particular space you want to fill with text,

then instead of clicking the page, click

and drag the Text cursor diagonally to

declare the limits of the text block. When

you release the mouse, the cursor will be

blinking at the top left corner of the text

block. When your text reaches the right-

hand limit of the text block, the text

automatically pops down to the next line

(see Figure 1).

Hopefully it shows in the figure, but

it’s readily apparent onscreen that auto-

expanding text blocks have hollow han-

dles in the midpoints of the right and

bottom borders; fixed-size text blocks

have solid handles. Double-click either of

the two handles to switch from fixed-size

to auto-expanding or back (do not drag

the center handles – see further).

Ultimately, you’ll be typing away and

won’t see any more characters on the

screen. That’s because you’ve hit the bot-

tom of a fixed-size text block. The text

has been entered and exists, but it has

overflowed, as indicated by the link box

icon at the bottom right of the text block.

The overflow icon is a large dot inside the

link box. When you see that icon, you

have at least four choices: change the

size of the font, change the size of the

text block, continue the text flow into a

new text block, or (shudder) ask to have

the text edited.

Assuming that you can’t get the text

edited, the font is too small to suit you

already, and there’s no room to expand

the box, then your only course of action

is to continue the text to another text

block elsewhere on the page, or to

another page. To do so, select the Text

tool by pressing the “T” key on your key-

board and drag a new text block. If you

see a “t” appear in a text block, then you

already have the Text tool selected. At

any rate, create a new text block where

you want the text to continue. Then press

the “P” key to select the Pointer tool;

select the original text block, and click

and drag from the link box icon to a spot

inside the new text block. The text will

flow automatically into the new block. A

new icon appears in the box at the bot-

tom right of the text block – a two-way

arrow, and a curvy line indicating the

connection to the next linked block or

path in the document.

An important feature is that you can

flow the text from a text block to a path

as well another text block. FreeHand

doesn’t care. You can link as many text

blocks and paths as you want, but use a

little foresight, please, because a linked

text block works fine until you want to

convert all the text to paths. You’ll be told

that you can’t do that. So for that or any

other reason you want to break a link,

you have a few steps to take.

If you want the text to abruptly end at

the first block, click the Pointer tool in the

link box and drag to an empty space on

the page. Any overflowing text is still

there – you just can’t see it, and neither

can anyone else. You’re left with an over-

filled text block and an empty text block.

The scary part about that is if you or

someone else changes the size of the

font or the dimensions of the text block

at a later time, that overflowing text may

appear, or some of the original text will

disappear. On the other hand, you can

simply delete a linked text block. If it was

the last linked block, text will continue to

overflow, or if it was in the middle of sev-

eral linked blocks, text will pass to the

next text block or path in the link.

When you want to preserve the text in

a linked text block, but cancel the linking,

cut all the text from the linked block. The

overflow icon should disappear. Paste the

cut text into the empty text block.

Perhaps you’ve created a text block

that isn’t the right size. What do you do

then? You can change the size of any text

block by dragging any of the corner han-

dles of the text block. If you drag a center

handle, you will increase or decrease the

spacing between the letters (vertical han-

dle), or lines of text (horizontal handles).

To move a text block, use the pointer tool

to select the text block, and move it as

you would any object in FreeHand.

If you’re the type of artist who likes to

pre-plan a layout, you can create several

empty text blocks and link them. It’s a

useful setup for a template. Then, at a

later time, you import text, placing it in

the first text block in the link. The text will

flow through your document like a pay-

check through my hands in a computer

store.

Duplicating Text Blocks

Sometimes you need to use the exact

text, or you need a new text block that

has the same formatting as an existing

text block. Select the text block with the

Pointer tool, hold down the Option/Alt

key, and drag a copy of the text block to

another location.

More Text Block Help

You can add a fill color and/or a

stroke to any text block. You might find

that useful from time to time. Just select

the text block with the Pointer tool and

apply the attributes. If you haven’t made

any modifications, the text could abut

the sides, top, and bottom of the text

block. You can fix that in the Object

panel, which will be explained later. The

benefit of having a text block with color

and a border is that you can change its

size and shape without adjusting a sepa-

rate object and realigning text – you only

have one object to contend with instead

of a text block and a block of color.

Selecting Text

So far we’ve only been concerned

with the text block. “What about text?”

you say. If you currently have the Pointer

tool selected, double-click the pointer

inside the text block to activate the Text

tool (sometimes it brings up the

Transform handles, which is very irritating

– if that happens, choose the Text tool

from the menu). To select text to edit or

enter new text, click anywhere in the text

block that’s appropriate. If you double-

click a word, only that entire word will be

selected. Triple-click anywhere in a para-

graph to select the entire paragraph. If

you want to select all the text in the

block, choose Select All (Cmd+A or

Ctrl+A). If you’ve used the Pointer tool to

select a text block and you Select All, all

objects on the page will be selected. If

you have the Text tool selected and the

cursor placed in a linked text block,

choosing Select All will highlight all the

text in the entire link, across all blocks

and paths.

Changing Text Fill Color and

Adding Strokes

By default, all text in FreeHand has a

black fill. If your text is live, you can

change the fill color in the Object panel >

Text Fill Color, in the Swatches panel, or

from the swatches in the Tools panel. You

can also use the Eyedropper tool to drag

a color from anywhere in your document.

If the text block is selected, then all of the

text will be changed to the new color. If

you’ve used the Text tool to select text,

only the selected text will be modified. If

you use a font with a particular color and

size often, drag a block of that text onto

the Styles panel and give the style a

name. Then you can apply the formatting

in a snap. A stroke can be added to text

at any time by selecting Add Stroke in the

Object panel, choosing a color from the

Swatches panel (dragging it to the Stroke

box in that panel), or choosing a color

from the Stroke color well in the Tools

panel. The default is a black, 1-point

stroke. Note that the stroke will straddle

34 • MXDJ.COM 9 • 2004

fi
g

u
re

 1

fi
g

u
re

 2
fi

g
u

re
 3

fi
g

u
re

 4

the letterform’s outline – half of the

stroke will be outside the letter, and half

of the stroke will encroach on the inside

of the letterform. In my book, that’s not

acceptable, but you’ve got your own

books… To apply a non-encroaching

stroke, clone the non-stroked text block

and hide (View > Hide Selection) the

clone. Then select the original text block,

apply the stroke, and choose View >

Show All. Group the two text blocks to

prevent misalignment. You can also apply

any vector or bitmap effects to text, but

it’s generally not a good idea to attack

body copy with bitmap effects.

When you’ve converted text to paths,

you’ll be frustrated in your first attempts

to change the fill color. The “why”

notwithstanding, here’s the “how:” you

must first Subselect the text. I find it easi-

est to have a keyboard shortcut, but you

can use the Subselect tool to drag a

selection marquee around the text. Then

you can change the color in the usual

manner. It’s convenient to remember that

by default, text is black and set to over-

print. Therefore, when you convert black

text to paths, the resulting objects are

still set to overprint. You probably don’t

want that, so you should change the text

fill color prior to conversion, or you must

Subselect the objects, go to the Object

panel, choose the fill color item, and des-

elect Overprint. Believe me, it’s quicker to

change the color first.

Formatting Text
Select the entire text block, or use the

Text tool to select the text you want to

change. If you have the Text toolbar on

the monitor, you can make general for-

matting decisions such as font, size, lead-

ing, alignment, and style there. The style

that’s referred to is plain, bold, ital, and

bold ital – not the text style you set up

for the company masthead. For other for-

matting, you need the Object panel (see

Figure 2).

Whether you have a text block or a

portion of text selected, the default text

window appears. Once there, you can

modify font, style, size, alignment, lead-

ing, baseline shift, kerning, and the curi-

ously named “Edit…” button. Use Edit

when you want to input the Ragged

Width and Flush Zone (see Figure 3). A

Ragged Width setting of 100% is justi-

fied text. That means that in a given line

of text, if there is a five-letter word, it will

be stretched completely across the text

block. If you leave the setting at zero,

you’ll have “normal” word/letter spacing.

At a setting of 75%, the Flush Zone will

full-justify the last line in a paragraph

that is at least 75% the width of the

column. If you don’t want that full-justi-

fied last line, put a high number in this

field – I have mine defaulted to 99%.

The No Effect button is a drop-down

menu that allows you to add shadow,

underscore, and the usual DTP format-

ting. The button in the figure named

“+Normal T…” is the “real” Styles menu,

and if you have custom styles, you can

select them from here instead of going

to the Styles panel.

Paragraph Controls

When text is selected, the Object

panel has five buttons running down the

left side. We’ve just discussed the default

button; the next one down has para-

graph settings as shown in Figure 4.

As you can see, you can still change

the font color and add strokes or effects,

but now you can add (or remove) space

before or after paragraphs, indent the

entire paragraph from the left or right, or

indent the first line. The more sensitive

typophiles among us can have our punc-

tuation hang outside the text block to

appease our esthetic tastes, and if you

don’t check the Hyphenate box,

FreeHand will not hyphenate your copy.

The Edit button determines the hyphen-

ation language, how many consecutive

hyphens can be used, whether to skip

capitalized words, and an override of

hyphenation for a given section.

Paragraph Rules

Paragraph rules have nothing to do

with proper grammar. They are horizon-

tal straight lines that follow a para-

graph. Use them to separate lines of

text in a subhead or block of text pulled

from a page to draw the reader into the

article (“pull quote” as shown in Figure

5). But it’s really handy if you’re making

a table and want horizontal rules

9 • 2004 MXDJ.COM • 35

fi
g

u
re

 5

fi
g

u
re

 6
fi

g
u

re
 7

fi
g

u
re

 8
fi

g
u

re
 9

between rows of text. I think it’s proba-

bly one of the most convoluted areas of

working with text in FreeHand, so I’ll

explain it in detail. If you select a text

block, the paragraph rules will apply to

all paragraphs in the block. If you select

a single paragraph, then the rules only

apply to that particular paragraph.

When the selection is made, use the

drop-down menu to select Center or

Paragraph. Center will align the rule in

the center of the paragraph; Paragraph

will align the rule according to the para-

graph alignment you have set, that is,

centered, justified, flush left or right.

Depending on the next few settings you

make, justified may amount to “cen-

tered.” When you’ve made your selec-

tion, you will notice that absolutely

nothing has happened to your text.

It’s pretty disappointing. But here’s

where the convolution comes in:

select the Text Block item in the Ob-

ject panel (shown in Image 6), and

click the Add Stroke button. The rule

will appear in your text, and you can

change the weight and color just as

you can any stroke. But wait, there’s

more! You’ll see that there’s also a

shiny new border around your text

block. That’s probably not what you

were expecting. So re-select the Text

Block menu item, and deselect the

Display Border check box at the bottom

of the panel. That deletes the rule sur-

rounding the text block and leaves you

with your paragraph rules. You’re not

stuck with the results you see, however.

Just select the Text object in the Object

panel, and click on the Paragraph but-

ton again. Drag down to Edit to bring

up the Paragraph Rule Width box

(Figure 7). Here you can choose to

shorten the width of the paragraph rule

by entering a percentage, and you can

decide whether that percentage is of

the entire column, or the last line in the

paragraph.

I know, you’re all excited now, and

can’t wait to use paragraph rules, but

keep at least one other thing in mind:

you lose the rules when you convert

to paths, and you may get an unexpect-

ed extra blank line in the text block

when you copy an auto-expanded

text block into Fireworks. Converting

the text block to fixed-width and

widening the text block a few points

before copying the text will correct

the situation.

Paragraph Spacing

Paragraph spacing attributes are

shown in Figure 8. With this section

selected, you can customize the word

and letter spacing for any text you have

selected. The default settings are good

for 99% of the work you’ll probably do,

but when you have to stretch or shrink

a word, sentence, or paragraph so it will

fit better into a layout, you have a lot of

control. The problem you may have is

one of legibility with extreme settings.

At that point, you may be moved to

enter a percentage in the field that

will compress or expand the letters

themselves.

Sometimes, a setting of 98% is

enough to squeeze a dangling word or

two up into the paragraph so the layout

fits perfectly. The “Keep lines together”

setting prevents widows and orphans –

short lines of text at the top or bottom

of columns – from occurring. If you

enter a number such as 3 in this field,

you won’t have any single or two-line

paragraphs beginning or ending

columns. A check mark in Selected

Words will keep the words you have

selected on one line, regardless of the

gaping hole that may be left in the line

above it.

Managing Columns of Text

When you need to work with

columns, you can either divide your

page into columns and gutters by drag-

ging guidelines across the page, or you

can simply click the Columns button to

bring up the panel shown in Figure 9. In

the first text field on the left, enter the

number of columns you want. Directly

beneath that field, the height of the col-

umn you have selected will be shown,

you can enter a fixed height for the col-

umn. Up to the right top again, enter a

number for the gutter space, and use

the Rules menu to place vertical rules in

the gutter between columns. In the bot-

tom half of this panel, you can cut the

Illustrator, designer,

author, and Team

Macromedia volunteer,

Ron Rockwell lives and

works with his wife,

Yvonne, in the Pocono

Mountains of

Pennsylvania. He is the

author of FreeHand 10

f/x & Design, and coau-

thored the Studio MX

Bible. Ron has just intro-

duced a “Casual

FreeHand” course avail-

able at www.brain-

stormer.org. Many

thanks to John Nosal,

Peter Moody, Bob

Sander-Cederlof, and

other engineers at

Macromedia for the

technical editing and

support they provide.

ron@nidus-corp.com

36 • MXDJ.COM 9 • 2004

fi
g

u
re

 1
0

fi
g

u
re

 1
1

9 • 2004 MXDJ.COM • 37

columns vertically, adding numbers of

rows within the column(s), adjusting the

gutter space, determining the width, and

adding a horizontal rule. When using

rules, Inset provides a break between

columns or rows, whereas

Full Height or Full Width go the full

length or width of the text (see Figure

10). These rules only appear in gutters,

not around the text block, and they are

created in exactly the same manner as

the paragraph rules described above.

The two choices for Flow determine

how your text reads between columns

and rows.

Column Adjustments

The last setting you have in the

text area is Column Adjust (see Figure

11). This only has an effect if you are

using the multiple column aspect

of the Object panel – it doesn’t work

if you have text in multiple columns,

whether the text is linked or not.

Figure 12 shows how FreeHand

attempts to flush or balance the bot-

toms of the columns. It can only work

with what it’s got, so some blocks of text

will work better than others, depending

on many factors from the font’s size and

weight, column width, size of words,

numbers of paragraphs, and more.

The bottom two text blocks are

clones of the top block. The purple

shapes indicate how much space is

empty from the baseline of the last

line of text to the bottom of the

column rule. Thin red lines show

how baselines compare from column

to column. The top row of text is not

adjusted in any way. The middle row

has been adjusted with the Balance

option, which attempts to equalize

the number of lines in each column.

Since multiple columns have been

utilized, there is no option to use

an auto-expanding text block.

Therefore, the height of the text

block is determined by the size

you’ve created, and shown by the

height of the column rules. The bot-

tom row of text has been modified

with Modify Leading, which has

added fractional leading between

lines in order to bottom them out.

Notice how the leading has increased

in the last column so that lines of text

do not align with the other columns.

More Typography Next Month
There’s a lot to be learned about

FreeHand’s text handling capabilities.

Next month we’ll get into tabs, handling

text from Illustrator documents, text to

paths, text inside and outside objects, and

a few other text tricks.

fi
g

u
re

 1
2

38 • MXDJ.COM 9 • 2004

o here’s the deal: you want to

create a snowboarding game.

You have three weeks to do it, it

can’t exceed 1MB, and it must work

online on at least 80% of kids’ PCs. So let’s

list the options open to us. That’s going

to be one short list: boot up your copy of

Director MX 2004 and get started! Before

we get our boots on and set off for a

great half-pipe session on our favorite

board, we’re going to need some assets.

Here at Catalyst, we use Lightwave 3D for

3D asset creation. For most games that

you create using Shockwave 3D, you will

benefit by controlling at least some of

the interactions using Havok. This

remarkable Xtra is a rigid body physics

simulation. If that sounds like a compli-

cated thing and your eyes are beginning

to cloud over, then wake up, because this

is one to try.

Trust me on this; you need to know

this stuff. It’s tricky at first, but the results

are nothing short of amazing and before

long you will be creating physics-based

games with the best of them. In the next

few pages we will start with an introduc-

tion to physics simulations followed by

an overview of Havok in particular.

Finally, we will look at applying this to an

actual snowboarding game that is avail-

able online. There’s lots to learn, but once

you have mastered the basics, you will

find that Havok looks after things in your

game that, even after weeks of complex

coding, would otherwise never have

looked right.

What Is Rigid
Body Physics?

A rigid body physics simulation takes

the meshes in your scene, then gives

them weight and friction, so if one hits

another, it will react in a way that is a

close mirror to what happens in real life,

except no deformations of the object will

occur. The bodies will always hold their

shape, but they may go tumbling off into

the distance.

For most 3D worlds, the actual size of

the world is not important. However,

when you start playing with physics, size

is very important. Units in Havok are, by

default, expected to be in meters and

kilograms. The usual value for the force of

gravity is 10ms2 (meters per second

squared), which means that if the object

starts from being stationary, after one

second it will be travelling at 10ms. If you

have an object that is about a meter

square and give it a weight of around 10

kilograms and then drop it from a height

of 3 meters with a force of gravity of

10ms2, then the way it tumbles will be

just how you anticipated; it will hit the

floor in less than a second and bounce or

tumble depending on settings that you

apply to the object to initialize it. If, how-

ever, the object is 100 units square and is

dropped from 300 units high with a simi-

lar gravitational force, then you may think

that the speed is wrong; in actual fact,

you are dropping a large warehouse from

300 meters in the sky, not a small crate

(see Figure 1). The distance travelled is

given by the formula

d = vt + 1/2 at2

Because a rigid body physics simula-

tion has to work at an alarming rate, it

approximates a huge number of the cal-

culations to speed up the processing.

Nevertheless, you should never give a

physics simulation more work to do than

it needs. Suppose you are using a

physics simulation to move a car that is

made from 1200 polygons. The car will

look beautiful, but the same motion can

be achieved by using a very simple sub-

stitute for the car. Look at Figure 2,

where we show a car and the proxy

object that can be used by the physics

simulation to move the car. The proxy

contains less than 100 polygons, where-

as the car contains several thousand. The

technique is to make the proxy invisible,

to let Havok move the proxy, and then to

copy the transform matrix of the proxy

to the actual visible car model. A rigid

body simulation at some stage in the cal-

culations gets down to examining each

vertex and triangle in the object. If we

can get these down, the performance

will soar.

A common problem with a physics

simulation is the time interval used in

allowing impossible things to happen. In

Figure 3, we see a ball going straight

through a wall when it should have

bounced off. Havok knows nothing

about your world in the way you imagine

it. It does know about time. If the num-

ber of frames updated a second is 25 and

Havok calculates the positioning of the

ball just prior to hitting the wall at 1.0

seconds, then just 0.04 seconds later it

calculates that the ball is happily on the

opposite side of the wall from where it

appeared just a short interval before. As

far as Havok is concerned, that’s okay. It

doesn’t “realize” that the ball passed

through the wall, because in the time

intervals where it does do calculations,

the ball is found to be in an acceptable

position. There is a way out of this prob-

lem that does not require a computer

capable of displaying 200 frames a sec-

ond. Instead, we tell Havok to calculate

sub-steps. If we tell it to calculate three

sub-steps, then the very different behav-

ior illustrated to the right of Figure 3 will

occur. Although only two screen updates

occur, three additional intermediary cal-

culations ensure that Havok is kept

abreast of the situation. It is possible to

adjust the number of sub-steps to suit

your application. You should aim to use

simulation

Snow Problem

The physics of Havok
by nik lever

s

9 • 2004 MXDJ.COM • 39

the minimum number of sub-steps that

avoids physics errors. Each additional

sub-step takes computational time;

therefore, by minimizing the number

you will get the optimum frame rate per-

formance.

Creating a Scene that
Uses Havok

The initialize method is the most

important when you use Havok. It starts

the simulation and the parameters

passed greatly affect the appearance of

the simulation. There are two ways to

define physical information for the Havok

Xtra: The first method for creating physi-

cal simulation information is through a

modeling tool. The modeling tool you

use must support exporting .hke files.

You can import this .hke file as a movie

cast member using the File > Import

menu options. .hke files already contain

world scaling information and tolerance

(as specified within the 3D modeler), so

you don’t have to supply this value when

initializing. 3DS supports .hke files but

Lightwave does not.

For the snowboarding game, we had

to use the second method to create

physical information where we use the

models within a 3D scene to define the

physics information. In this case, you

must create a blank Havok cast member

using the Insert > Media Element >

Havok Physics Scene menu option. It is

very important that you establish the

scale of the physics scene from the start;

as we discussed earlier, scale controls

how the simulation matches real world

experience. Internally, the Havok physics

simulation employs the metric system

(i.e., the default unit is meters). A W3D

cast member may have been created in

any number of world units (meters, inch-

es, feet, user, generic). The Havok Xtra

interface can work with the same units

as this W3D cast member. However, in

order to perform the proper simulation,

Havok Xtra must know the correspon-

dence between the display (3D scene)

units and the simulation units.

You must provide a world-scaling fac-

tor when initializing the physical simula-

tion. For example, if you designed a

scene using inches, then you would sup-

ply a scaling value of 0.0254 (1 inch =

0.0254 meter). Be aware that any values

in the scene (like gravity, rest length of

fi
g

u
re

 1
fi

g
u

re
 2

fi
g

u
re

 3
fi

g
u

re
 4

springs, etc.) are interpreted as scene

units rather than internal physics units.

That means that a real-world gravity

value of 9.81 meters/second2 would have

to be set as 386.22 inches/sec2 if working

in inches.

You must also provide a collision tol-

erance parameter. This tolerance is used

to determine when objects are touching

(i.e., if they are closer than the tolerance).

In general, higher collision tolerance val-

ues yield more stable simulations.

However, setting too high a value could

lead to noticeable gaps between stacked

objects. So it is recommended that you

set the collision tolerance to the highest

value at which it does not visually affect

the scene. Figure 4 shows how tolerance

affects the positioning of objects that

stack.

If a scene consists of many objects in

a room (crates, tables, chairs, etc.), a toler-

ance of around 0.1m should be fine.

However, if the objects in the scene are

dice on a table, a smaller tolerance – say

0.01m or less – is preferable. If the objects

are cars or buildings, a higher tolerance

applies. If no value is supplied, then the

default tolerance of 0.1 is used. As a gen-

eral rule of thumb, the tolerance value

should be set to around 10% of the scal-

ing factor used in the simulation.

Collision tolerance is a value measured in

scene units. That means that the scaling

factor affects its actual value. havok.ini-

tialize() must be the first Havok function

called or other Havok functions will have

no effect.

Defining the Physical
Properties of Your Models

The function havok.makeMovable-

RigidBody(modelName, mass, isConvex)

creates a movable rigid body with mass,

mass; and name modelName. When you

create a rigid body, you need to decide

whether your geometry is concave or

convex. A model is convex when it has no

hollows. Havok will create a convex ver-

sion of your model if you choose simply

by choosing true for isConvex; this is

called a convex hull. It is possible to use

the convex hull of a model as the physi-

cal simulation in many cases. A convex

hull does not work when it is important in

your simulation for objects to drop into a

hollow. In the snowboarding game, the

slope has sides; if we used the convex

hull then the sledge would sit on an

imaginary surface at the top of the sides.

Figure 5 shows the effect. Clearly this is

not as intended so you would not use the

convex hull. It is easier and faster to use

convex geometries to resolve collisions,

so you should use them wherever possi-

ble. When you are creating a rigid body

from a model, you must add the meshde-

form modifier to the model, i.e.,

model.addModifier(#meshDeform).

Otherwise, the Havok Xtra cannot access

the geometry of the model.

If you have an object in your scene

that needs to be part of the physics but

you know will never move, then use

havok.makeFixedRigidBody(modelName,

isConvex). This function creates a fixed

rigid body from a model of name

modelName and adds it to the simulation.

Fixed rigid bodies never move, but are

still involved in collision detection. These

are mostly used for scenery elements like

walls. Fixed bodies do not have mass.

Mass is a property that only makes sense

for objects which are free to move.

To set up the simplest Havok scene

follow these steps. We will use Lingo to

provide all the physical simulation infor-

mation rather than a prepared HKE file.

1. First we import the 3D world: Click the

File menu, select Import, and select

the required Shockwave 3D (W3D) file

from the dialog window. This adds the

3D cast member to the cast. This may

then be dragged onto the stage.

2. To create the empty Havok simulation:

Click the Insert menu and select Media

Element>Havok Physics Scene. This

adds an empty Havok cast member to

the cast.

figure 5

40 • MXDJ.COM 9 • 2004

fi
g

u
re

 6

3. Now add a Physics (No HKE) behavior

to the cast (from the Havok > Setup

behavior library): Playing the movie at

this stage will show a static world, i.e.,

we have not associated any rigid bod-

ies with the 3D models in the W3D file.

4. Now we need to create the Havok simu-

lation information by editing the Physics

(No HKE) behavior. The Lingo function

shown in Listing 1 creates two rigid bod-

ies that are added into the Havok simu-

lation and associated with two 3D mod-

els from the W3D file, “Box01” and

“Text01”. The first is a fixed convex rigid

body, i.e., one that may never move dur-

ing the simulation. The second is a con-

cave movable object. Listing 1 is from

the sample “helloworld.dir”in the sup-

port files for this article. Running the

sample, you will see the lettering fall to

the floor surface and bounce and tum-

ble in a very convincing manner. All this

is done with just the lines of code you

see in Listing 1. The “Havok Physics

(No HKE)” takes care of initializing the

physics using the following parameters.

Havok cast member 2

Tolerance 0.1

Time Step 0.03

Sub Steps 3

Scale 1.0

The scale is set to 1.0 because the

geometry was created using meters as

the scale. The tolerance is set to 0.1 of a

meter. Try adjusting the tolerance and

scale to see how it affects the scene. You

could also try adjusting the gravity vector

set in line 5 of Listing 1.

Adding Keyboard Control
In this example, we will build on

what we have learned so far. Open

‘sledgedemo.dir’. Unfortunately, the

geometry for this example was pro-

duced at completely the wrong size,

but it illustrates how you can set up

even a badly prepared 3D world to

use Havok by adjusting the values for

tolerance, scale, and gravity. In this

instance, tolerance is set to 20,

because at the scale of this world,

that represents a small gap around

the sledge. Scale is set to 0.025 and

gravity to (0, -10000, 0)! Nevertheless, by

using these values you can create a

usable simulation.

As in many games we produce, the

main work of the demo is in a main loop,

which in this case is the enterFrame han-

dler of the 3D sprite behavior ‘3D

Behavior’. Listing 2 shows the script.

Starting with line 2, we call a simple key-

board reader. This stores whether or not

the arrow keys and the space key are

currently pressed. The values are stored

in the property variables leftkey,

rightkey, upkey, downkey, and spacekey.

In this world, there are two rigid bodies,

the course and the sledge. Notice that

the sledge has two strange spikes stick-

ing up. These help handle situations

where the sledge is inverted. Once the

demonstration is complete we can make

the sledge object invisible and replace it

with a visible alternative. We did this for

a popular game at www.pingu.net; the

crazy sledging game uses Listing 3 to

handle most of the behavior of the

sledge. The proxy object being used to

control the sledges regardless of the

choice of character is exactly the one

shown in Figure 7.

A rigid body has many additional

properties and methods. To find out the

full details, consult the Havok documen-

tation either from your CD or from the

Web site given earlier. One property is

used in line 4 of Listing 3 – the linear

Velocity; think of it as speed. Since we

are going downhill, the y value should

decrease so the difference between the

previous y position and the current y

position should be positive if we do the

calculation shown in line 5. If it is nega-

tive, then we are trying to sledge uphill

so we can use this to inform the player

that they are going in the wrong direc-

tion; the code between lines 8 and 18

handles this, in this case simply by forc-

ing the sledge to stop so the user can-

not go too far in the wrong direction.

A Practical
Example

9 • 2004 MXDJ.COM • 41

A Word of Caution
Before you can use Havok, you need to ensure that it is

set up correctly. Unfortunately, because of a time limit

passing on the inclusion agreement, the Havok Xtra is not,

at the time of writing, part of Director MX 2004, so you

may have some problems in this regard. Macromedia is

trying to reach an agreement with Havok to make the Xtra

available to Director MX 2004 users, so by the time you

read this, it may be on the CD or available as a download.

Or, you can install Shockwave10 from the CD and then

navigate to the Macromed folder. On a Windows machine

this will be in the folder ‘Windows\System32\Macromed’.

Inside this folder is a ‘Shockwave10’ folder that contains an

‘Xtras’ folder. The file ‘Havok.x32’ should be in this folder.

Once you have located the Xtra, you need to copy it to

your Director MX 2004 installation folder. On a Windows

machine, this will be in ‘Program Files\Macromedia\

Director MX 2004\Configuration\Xtras’. Create a folder

called ‘Havok’ inside this folder and then copy ‘Havok.x32’

to this folder. You will also need the documentation and

the cast libraries which you can get from http://oldsite.

havok.com/xtra. Place the CastLibs in a Havok folder inside

the ‘Configuration/Libs’ folder. The documentation can be

placed wherever it suits your needs. Once you have added

these files, you will need to restart Director MX 2004

before the xtra will be available for use.

fi
g

u
re

 7

Nik Lever runs Catalyst

Pictures Ltd (www.cat-

alystpics.co.uk), a

Manchester, UK–based

company that makes

online games for

clients including

Kellogg’s, BBC, and

Cartoon Network.

Originally trained as an

animator, Nik now

writes code more

often than he scribbles

and is the author of

several Flash and

Director books

(www.niklever.net).

When he’s allowed out

into the light, he likes

to go sailing across

the Irish sea.

nik@niklever.net

42 • MXDJ.COM 9 • 2004

Line 21 is where we use Havok to

control the motion of the sledge.

Instead of simply moving the sledge we

give it a nudge using the rigid body

method ‘applyAngularImpulse’. This uses

a vector to apply rotational motion to

the rigid body. In the example at line

21, we use the previously stored proper-

ty variable pTurn to give a rotation in

the y axis. The left and right keys are

used to control the rotation while the

up and down arrows control forward

and back motion. Lines 27 and 28 show

how this is achieved; again we use a

method of the rigid body, applyImpulse,

that takes a vector and applies a force

defined by the vector. To move the

sledge, we want the force for a forward

motion to be along its z axis, so we first

get the z axis of the sledge, called board

in line 27. This is scaled up by a boost

value that is increased or decreased in

lines 14 to 18.

The behavior of the sledge would be

highly erratic if we left it at that, so we

must dampen down the effect in a sepa-

rate handler, dampenPhysics, which we

will look at in the next section.

Controlling the Results
Physical simulations are great unless

the behavior does not accurately suit

your application. In this case, you must

try to control the behavior. One thing you

cannot do is place a rigid body directly.

You must use Havok’s methods to

achieve the ends you desire. Some tips

are shown in Listing 3. Lines 3 to 12 get

the height of the ground directly below

the sledge. Lines 15 and 16 show how

the rotation of the sledge is reduced by

applying a damping affect which is the

opposite of the sledge’s angular velocity.

Lines 19 to 28 stop the sledge sliding too

much in the x axis. We want the sledge to

appear as though the runners hold the

snow so it is only happy when going for-

wards or back. The physics simulation will

slide to the left and right just as easily as

it will slide forward or back so we need to

stop this sliding action. This should only

happen when the sledge is on the

ground – boardHeight<100 – not in the

air. At line 21 we get the linearVelocity of

the sledge. This is a vector giving a speed

in the x, y and z axes. We use the vector

method normalize to get a vector of unit

length. Line 24 uses the vector method

‘dot’ to find how much of the vector is

aligned with the sledge’s x axis. The result

is a single value that we then map to the

x axis by multiplying the x axis by this

value in line 25. We now have a vector

that expresses the direction we need to

use for dampening the sideways slide. By

multiplying this by the magnitude of the

linear velocity and a previously stored

scaling factor ‘pSlideDamping’ that we

can use to give more or less sideways

slide we can finally, at line 27, apply this

to the sledge to minimize the sideways

slide.

Another thing we need to check is

whether or not we are upside down. In

any simulation, this can happen. To do

this, we use the dot product of the

sledge’s y axis with the default y axis (0,

1, 0). If this is less than 0.5, then we are

currently upside down. Rather than

react immediately to this, we simply

update a counter. This lets us adjust how

quickly we reset from such a situation. In

lines 42 to 48, you can see that we allow

a count of 20 before attempting a cor-

rection. To do the correction, we take a

fi
g

u
re

 8

9 • 2004 MXDJ.COM • 43

default transformation matrix, set the

position of the matrix to the current

sledge position, then move this up a lit-

tle to ensure we are above the snow.

Then we use, in line 46, the ‘interpola-

tingMoveTo’ method of the rigid body.

This takes 2 parameters, position and

orientation, expressed as an angle axis

list. If the rigid body can be moved with-

out interpenetrating other rigid bodies

in the scene then the body is moved; if

not it remains unmoved.

A Real World Example
The ideas given in the sledging

example were extended to controlling

a snowboarder in a game we market

as ‘SnowboarderXS’. In this game, which

is available from the support files at

‘SnowboarderXS.html’ (see Figure 8),

you choose one of two characters and

courses and then slide down the course,

jumping ramps, collecting stars, and

performing tricks. The control of the

snowboarder uses a proxy object

that operates identically to the sledge

demo.

The Havok Xtra is a fantastic tool for

creating high-quality online games. In

this article, we covered the basics of

using the control then moved on to some

of the more complex ways you can con-

trol the simulations. Always remember

that the most important starting point for

a simulation that uses Havok is to either

bring in your geometry scaled to meters,

or set up the scaling parameters to suit

your geometry. Okay, boots on, bindings

fastened, let’s get some air!

• • •

The source code fo this article is

online at www.sys-con.com/mx/

sourcec.cfm.

listin
g

 3
li
st

in
g

 1
li
st

in
g

 2

1 on beginSprite

2 s = member("HelloWorld")

3 s.resetWorld()

4 hk = member("Havok")

5 hk.gravity = vector(0, -10, 0)

6 -- create ground

7 m = s.model("floor")

8 m.addModifier(#meshdeform)

9 hk.makeFixedRigidBody(m.name)

10 -- create text

11 m = s.model("hello")

12 m.addModifier(#meshdeform)

13 hk.makeMovableRigidBody(m.name, 100.0, false)

14 end

1 on enterFrame

2 checkkeys

3

4 boardSpeed = boardRB.linearVelocity.magnitude

5 boardDY = pPrevY - board.worldPosition.y

6 pPrevY = board.worldPosition.y

7

8 if boardDY<0 then

9 pWrongWayCount = pWrongWayCount + 1

10 else if pWrongWayCount>0 then

11 pWrongWayCount = pWrongWayCount - 1

12 end if

13

14 if pWrongWayCount>50 and pBoost>10000 then

15 pBoost = pBoost - 200

16 else if pBoost<40000 then

17 pBoost = pBoost + 200

18 end if

19

20 if leftkey then

21 boardRB.applyAngularImpulse(vector(0,pTurn,0))

22 end if

23 if rightkey then

24 boardRB.applyAngularImpulse(vector(0,-pTurn,0))

25 end if

26 if upkey and boardSpeed<7000 and pUpsideCount = 0 then

27 hitV = board.transform.zAxis * -pBoost

28 boardRB.applyImpulse(hitV)

29 end if

30 if downkey then

31 hitV = board.transform.zAxis * pBoost

32 boardRB.applyImpulse(hitV)

33 end if

34 if not spacekey then

35 dampenPhysics

36 end if

37 end

1 on dampenPhysics

2 -- check height from snow

3 boardHeight = 0

4 wpoint = board.worldPosition

5 wdown = -1.0 * board.transform.yAxis

6 idetails = w3d.modelsUnderRay(wpoint, wdown, 2, #detailed)

7 repeat with j = 1 to idetails.count

8 if idetails[j].model = landscape then

9 boardHeight = idetails[j].distance

10 exit repeat

11 end if

12 end repeat

13

14 -- reduce heading rotation

15 rbForce = boardRB.angularVelocity * -pRotationDamping

16 boardRB.applyAngularImpulse(rbForce)

17

18 -- only reduce slide when on or near the ground

19 if boardHeight<100 then

20 -- reduce sideways slide

21 rbForce = boardRB.linearVelocity

22 rbForceMag = rbForce.magnitude

23 rbForce.normalize()

24 forceXfactor = rbForce.dot(board.transform.xAxis)

25 forceXfactor = forceXfactor * board.transform.xAxis

26 xDampen = -rbForceMag * forceXfactor * pSlideDamping

27 boardRB.applyImpulse(xDampen)

28 end if

29

30 -- flip if upside down

31 tn = transform()

32 pUp = tn.yAxis

33 wUp = board.transform.yAxis

34 cosine = wUp.dot(pUp)

35

36 if cosine < 0.5 then

37 pUpsideCount = pUpsideCount + 1

38 else

39 pUpsideCount = 0

40 end if

41

42 if pUpsideCount>20 then

43 tn = transform()

44 tn.position = board.worldPosition

45 tn.position.y = tn.position.y + 50

46 boardRB.interpolatingMoveTo(tn.position, [vector(0,1,0), 0])

47 pUpsideCount = 0

48 end if

49

50 end

NNNNOOOOONOOOOOSSSSSSSSVVVV SSSS OOOOSSSSSSSSSSSIOSIOSSSSISISVISIOSIOVVVVDDDDDDDIDIDIVD VVVV NNNNNNIIIDDDDDD SSSVVVVV NNNNNVVV
TOTOTOTOOOOOTOTTTTTTDDDDD OOTO KKKKKKK

EEETTTTHEHHTHEEE

TTTTT

44 • MXDJ.COM 9 • 2004

by andrew m. phelps

figure 1

9 • 2004 MXDJ.COM • 45

The shift to ECMAScript syntax repre-

sents a major advance in the Director

product, and is important to us for a

number of reasons. The primary reason

for the inclusion of this feature seems to

be to provide for a more common lan-

guage and syntax between Flash MX and

Director. We are capitalizing on the simi-

larities in the new syntax to create a

streamlined educational experience to

bring the products as close together as

possible. It also allows for a more com-

plete object-oriented structure, and bet-

ter tools for list management and string

operations.

The Information Technology
Department at RIT
Students and Majors

The Information Technology

Department at RIT currently enrolls more

than 1,000 undergraduate students and

approximately 400 graduate students

majoring in Information Technology,

Networking & System Administration,

Software Development & Management,

and New Media. We are also hard at work

in developing offerings in game pro-

gramming (a concentration already

exists; we are also pursuing plans for a

masters degree) and Digital Security. The

IT Department is housed within the

College with Computer Science and

Software Engineering. Courses are gener-

ally open to any of the students in any of

these programs, as well as to select stu-

dents in the College of Imaging Arts &

Sciences (CIAS), and other students from

other areas of campus.

Students and Educational Objectives

The direct effect of all of the different

majors and minors available to students

is that we have several different types of

students in our courses. Some come from

traditional computing backgrounds,

heavily immersed in math, science, and

programming, while others approach

application building from disciplines like

art, graphic design, and printmaking.

All of our students are required to

learn some programming, but because

they are majoring in different fields, their

reasons for doing so are widely varied.

Some of our students are directly con-

cerned with operating systems and low-

level driver design; others could care less,

and are solely focused on the user experi-

ence. Some are designing pieces for

back-end server rooms where perform-

ance is key; to others it’s all about selling

the client with look and feel.

Why Director?
Visual Programming

Given that we have students involved

with the department with differing pre-

requisite backgrounds, it is a challenge to

ensure that all of them have the basic

programming skills they will need to sur-

vive in the IT world. Every student major-

ing in information technology (but not

New Media) is responsible for completing

an introductory sequence in the Java pro-

gramming language. In addition, each

must complete an introductory course

entitled Programming for Digital Media.

This course uses visual tools like Director

and Flash to allow students to create a

visual application quickly, before they

may be able to do so in Java or C/C++. It

is a compelling educational experience to

be able to create a visual application with

graphics and sound in the first year of

study.

We have found this to be particularly

effective, as you might expect, in teach-

ing students who come from visually ori-

ented backgrounds (art, graphic design,

etc.). But this is generally a course

enjoyed by all students because of its

visual nature: students want to know that

they are creating “real applications” that

look and feel like those they use on a

daily basis. Creating command line–driv-

en exercises has the ring of being false,

and as such, it is my experience that stu-

dents are more engaged and driven to

learn in a visual environment. In fact, my

team is working on software to allow stu-

dents to do in Java some of the visual-

style programming that makes Flash and

Director so appealing.

Recently, we moved a lot of the

coursework in Programming for Digital

Media from Director to Flash. This is to

give students the Flash experience, and

because it seems to be the tool of choice

for interface design and implementation.

Flash handles buttons, sliders, and widg-

ets with amazing ease, and the light-

weight plug-in makes it a snap to use

almost anywhere. We talked about mov-

ing all of the material to Flash, but in the

end, this was not implemented for the

following reasons:

Imaging Lingo

The first technology that Director con-

tains that is important to us is Imaging

Lingo. This is a collection of commands

that deal with image manipulation, allow-

ing the programmer to copy rectangles of

COPYRIGHT 2003–2004 A PHELPS, A CLOUTIER.

fi
g

u
re

 2

46 • MXDJ.COM 9 • 2004

one image to another, get or set a pixel of

an image to a specific color, extract or set

the alpha of an image, or apply ink effects

to an image or a part of one. This is impor-

tant to us because the Imaging Lingo

operations, and the functionality they

allow, are similar to the functionality

employed in texture management in

lower-level environments.

We teach several courses on game

programming, including 2D and 3D

Graphics using DirectX and OpenGL.

Students develop engines in C/C++ and

manipulate textures directly on the

graphics card. But the operations, from

loading images, copying bits, dealing

with alpha, etc., have direct parallels in

Imaging Lingo. Students who have taken

the prerequisite coursework in digital

media have almost no problem grasping

what is going on inside a modern graph-

ics engine because of their familiarity

with the concepts.

Director makes a great play space and

learning environment for exploring imag-

ing concepts because it shields the pro-

grammer from the one thing they are

most likely to encounter – access to

undefined memory. If any of the coordi-

nates that an image copies run amuck,

then you are probably trying to read

from or write to memory that you don’t

“own”. Dealing with this in C/C++ can be

a pain, so it is convenient to explore

these concepts first within the protective

shield of the Lingo framework.

Shockwave 3D

The single most important reason

that the IT Department is using Director

is by far Shockwave 3D. No other pack-

age on the market provides a cheap, easy

way to script a 3D engine with hardware

access that can be played back on a

machine within a browser and without

the latest in graphics hardware.

The ease with which a student can

get a 3D engine up and running with

Shockwave3D is almost mind-blowing:

we left it in Programming for Digital

Media as the one Director-based assign-

ment because the ability to do anything

in 3D is so important to the student

mindset and really empowers them to

think, “Hey, I can do this” well before

their programming ability would allow

them to get involved with 3D in a tradi-

tional sense. The 2D and 3D graphics

courses, for example, are taught in the

third and fourth years of study in the

Information Technology program, and

are also taught later in the Computer

Science program.

To give you a sense of how easy it is

to get something happening in 3D, the

code presented in Listing 1 is a simple

example of placing a cube at the world

origin and then rotating a camera

around it on a per-frame basis. With the

e
x

a
m

p
le

s

9 • 2004 MXDJ.COM • 47

new ECMAScript Syntax in DMX 2004, this is very

similar to Flash programming, and our students

can bounce back and forth with relative ease (see

Listing 1).

Projects RIT Is Involved In
While the above project is a good example of how

easy it can be to get involved in Shockwave3D, we are

heavily involved in products of greater complexity. It is

impossible to catalog all of the ways in which we use

Director and other Macromedia projects, but the fol-

lowing are a small selection of things we have done

recently with Shockwave3D:

Games and 3D Engines

Games are an important part of our curriculum,

both as educational tools and as a concentration area.

Some of our students have gone on to work in the

games industry, at Microsoft, Electronic Arts, and sever-

al smaller studios. Exploring game programming and

engine building is currently a very hot academic area,

and Shockwave3D allows students to start building 3D

games before they take the more traditional graphics

courses. One of these projects, entitled “Project

Broadsword”, has been used in several papers at the

Director Online User’s Group as an example project for

various techniques that were explored during its con-

struction (see Figure 1).

In addition, because S3D offers access to hardware,

we’ve capitalized on it in two ways. It is possible to write

traditional 2D games in S3D by fixing the camera per-

spective. This allows us to design 2D games to the

industry standard 60 FPS, which we were usually unable

to accomplish using the traditional engines in either

Director or Flash.

We’ve also been able to manipulate the access

that Director provides to graphics hardware to add in

support to the Nvidia Cg language. Using a custom

Xtra we designed, we can use Director as an environ-

ment to explore vertex- and pixel-shader develop-

ment. While this project has just begun, it has the

potential to be a very useful prototyping tool (see

Figure 2).

That Director allows us the XDK at no extra charge

to develop in-house tools for the product is a great fit

for us. In the future, hopefully more of the S3D XDK will

be made publicly available.

Shared Extensible Learning Spaces

My colleagues, Professors Steve Kurtz and Nancy

Doubleday, run an upper-division course every year

entitled “Shared Extensible Learning Spaces,” which is

an evolving set of strategies for the representation of

complex concepts in interactive media spaces. Today,

the faculty and students are creating 3D spaces popu-

lated by smart actors to explore emerging behavior in

self-organizing systems and document the cognitive

experience of users in virtual worlds. They are devel-

oping tools using the Macromedia

Director environment at three levels. At

the top level are complete products:

interactive simulations for learners and

researchers. The bottom level is an

extensible set of modules and compo-

nents for the programming environ-

ment in which our tools are built. Our

middle-level tools allow users/authors

to participate in the SHELS project at a

level appropriate to their skills and

objectives. These components scaffold

the experience of simulation building

for content experts and learners whose

purposes are best served by working at

a higher level. We design our environ-

ments to facilitate active learning and

encourage inquiry and scholarship at

every level.

One of the early prototype worlds for

the SHELS system was the “Tractor War”

world, which allowed the user to

observe an ongoing battle between

teams of varying colors (“red team,”

“blue team,” etc.) that had different evo-

lutionary algorithms for obtaining and

storing food. The teams were represent-

ed by tractors (which gathered food)

and barns (which stored it) in a 3D world

(see Image 3). Director allows a multi-

user architecture and the ability to pro-

vide 3D front ends to the networked

data was a key component in the design

of this application.

Data Visualization Prototyping

Another way in which we use

Shockwave3D is by prototyping data

visualization. A team of students can get

a prototype off the ground in just a few

days, as opposed to building a complex

system that may take months or even

years to construct. Since experimentation

in visualization is generally an unknown –

i.e., you never know if your way of visual-

fi
g

u
re

 3

48 • MXDJ.COM 9 • 2004

www.fusetalk.comwww.fusetalk.com

Web based collaboration made to order.
Flexible administration,
Authentication integration,
Section 508 compliant,
and coming soon...

FuseTalk for Microsoft .NET.

figure 5

9 • 2004 MXDJ.COM • 49

izing something will be effective until it’s

attempted – the need for rapid prototyp-

ing is paramount. We’ve used Director to

simulate file system visualization (see

Figure 4) as well as cellular automata

growth (see Figure 5). In the file system

example, it showed enough promise that

we went on to develop a more robust

system in C++/Java that we are currently

still testing.

Conclusion
Director is a powerful tool for use in

educational institutions. It allows stu-

dents to ramp up quickly to create

the applications they want to build,

and provides building blocks for

those that go further on to study

lower-level programming languages.

The new syntax afforded in DMX2004

allows a closer working relationship

with FlashMX users, and has been

advantageous to us in teaching

students from a wide variety of back-

grounds by providing a common lan-

guage core.

We have been very impressed with

what we have been able to accomplish

with the existing Shockwave3D package,

and hope to see its use grow both with-

in the academic community and in the

industry at large.

Andrew M. Phelps is in the Information

Technology Deptartment at the

Rochester Institute of Technology in

Rochester, NY (http://andysgi.rit.edu/).

amp@it.rit.edu

fi
g

u
re

 4

li
st

in
g

 1

50 • MXDJ.COM 9 • 2004

//SIMPLE3DWORLD CLASS
/*--
constructor for Simple 3D World Object
---*/

function Simple3DWorld(sName, iSpriteNum) {

//set basic props
this.sName = sName;
this.iSpriteNum = iSpriteNum;
this.ThreeDSprite = sprite(iSpriteNum);
this.ThreeDWorld = sprite(iSpriteNum).member;

this.mSphereSetup(); //create a sphere
this.mCameraSetup(); //position camera

}

/*--
Simple3DWorld::SphereSetup
creates a sphere at 0,0,0 with radius 200
---*/
Simple3DWorld.prototype.mSphereSetup = function() {

//create a template (model resource)
//for how to build a spheres
this.mrSphere = this.ThreeDWorld.newModelResource(

this.sName + "_model_resource",
symbol("sphere"));

//fill out properties of the template
this.mrSphere.radius = 200;
this.mrSphere.startAngle = 0.000;
this.mrSphere.endAngle = 360.000;
this.mrSphere.resolution = 50;

//build a sphere in the world
this.mSphere = this.ThreeDWorld.newModel(

this.a_sName + "_model",
this.mrSphere);

//set its position in the world
this.mSphere.transform.position = vector(0,0,0);

}

/*--
Simple3DWorld::CameraSetup
positions the camera at XYZ 0,200,800, pointed
at the origin
---*/
Simple3DWorld.prototype.mCameraSetup = function() {

var vCamPos = vector(0,200,800); //cam position
var vLookPos = vector(0,0,0); //lookat position
var vUp = vector(0,1,0); //"up" orientation

//get a handle to the default camera created by S3D
this.oCamera = this.ThreeDWorld.getProp("camera", 1);
//set its world position
this.oCamera.transform.position = vCamPos;
//point it at the origin, with no rotation along
//its local Z axis (vUp matches world-space up)
this.oCamera.pointAt(vLookPos, vUp);

}

/*--
Simple3DWorld::Update
called per frame to animate camera in a
simple loop
---*/
Simple3DWorld.prototype.mUpdate = function() {

//rotate the camera around the Y-axius
//2 degrees per frame, using world coordinate
//space.
this.oCamera.rotate(0,2,0,symbol("world"));

}

/*--
Simple3DWorld::ResetWorlds
called on movie destruction, resets the 3D
castmember to its original state.
---*/
Simple3DWorld.prototype.mResetWorlds = function() {

this.ThreeDWorld.resetWorld();
}

//STARTMOVE & STOPMOVIE SCRIPTS

//global start and stop movie functions

//these are provided by director

function startmovie() {

//create an object to setup and control

//the 3D world. Pass it which sprite number

//the 3D cast member is in.

_global.o3D WorldObject = new Simple3DWorld(

"sphereWorld",

1);

}

function stopmovie() {

//clean up after ourselves, reset the world

//to an empty one, and clear all globals

_global.o3DWorldObject.mResetWorlds();

_global.clearGlobals();

}

//EXITFRAME LOOP

//called once per frame

function exitFrame() {

//rotate the camera in the 3D world

_global.o3DWorldObject.mUpdate();

//loop back to this frame again

_movie.go(_movie.frame);

}

52 • MXDJ.COM 9 • 2004

hanks to the extensive range of

xtras available, a Director projector

can create any type of document

and write it to the user’s hard disk. In

Windows Explorer and the Macintosh

Finder, users expect that a double-click

on a document icon will launch the pro-

gram that created it. This article shows

you how to associate files with the

Director projector that created them. By

the end of this article, you will have creat-

ed a simple word processor application

that creates its own document files; dou-

ble-clicking on the icon of one of these

files will open your Director application

so that you can edit the document.

There are many situations in which

this technique will prove useful. For

example, you may want to save the state

of a game in progress, a customized slide

show presentation, or mark up data for a

video sequence.

But recognizing the files created by a

projector is not something that Director

does naturally. By default, when the user

double-clicks on a document created by

a Director projector, the operating sys-

tem prompts the user to select an appli-

cation to open the file. If the user proper-

ly selects your projector, then your pro-

jector is launched, but the document still

doesn’t open.

For my programs, this is unaccept-

able. I sell programs that are often in

direct competition with titles from major

software vendors. Something like the

double-click may seem trivial, but the lit-

tle things add up and the less my users

have to think about, the more likely they

are to purchase the product. I like my

projectors to be as professional as possi-

ble, complete with robust menus, key-

board shortcuts, user-defined prefer-

ences, and standard user-interface ele-

ments. In the end, if the user can’t tell

that the program was created with

Director, then I’ve done my job. This

means finding a way to deal with double-

clicking on documents.

Thankfully Director has an undocu-

mented feature – a system variable called

the commandLine that corresponds to

the operating system’s command line.

When the user double-clicks on a docu-

ment, the operating system’s command

line gets updated with the path to the

document, and Director’s commandLine

provides us with this information.

But figuring out which document the

user clicked on is only half the battle. The

operating system also needs to be told to

launch your projector instead of prompt-

ing the user, and then your application

has to be set up to deal with what hap-

pens so the file actually opens. This arti-

cle will give you step by step instructions

for getting this to work for Macintosh

OSX and Windows platforms. The

commandLine doesn’t exist on pre-OSX

Macintosh operating systems because

those systems don’t have a command

line at all. So, this technique will not work

on OS8 or OS9.

This article assumes you have a basic

understanding of Lingo, movie scripts,

frame scripts, and working with xtras. You

will also need some additional tools

besides Director. For Mac OSX, you will

need a program called Property List

Editor, which can be found on the

Developer Tools CD that came with your

copy of OSX. If you don’t have that, you

can get away with just using a text editor,

but you’ll need to have a basic under-

standing of XML. You will also need

DirectorMX or DirectorMX2004 since

those are the only versions of Director

that can create projectors for OSX. For

Windows, you will need a third-party xtra

since we will be editing the Windows

Registry. This article uses the BuddyAPI

xtra, but any xtra that can modify the

Registry will work, such as the Registry

xtra and others.

Setting Up Your Application
In order to have a document to dou-

ble-click, we will need to have an applica-

tion that can save an open document. In

this article, we will create a simple text

editor that can save and open docu-

ments. It will function like a mini word

processor, so I’ll call it MiniWord.

Launch Director and create a new

document with a white background. It

can be any size, but there’s no reason to

make it huge, so make it fit comfortably

on your screen. Next, create a field mem-

ber by selecting Insert > Control > Field.

The field will appear onstage with a cur-

sor in it. Leave it blank for now and find

the field cast member in the cast window.

Name the cast member “content.” Now

select the field sprite on the stage and

open the Property Inspector. Click on the

Field tab and click on the Editable check

mark. In the Framing dropdown menu

select “Scrolling” and resize the sprite so it

fills most of the stage. Leave some room

at the bottom for some buttons that we’ll

create in a moment. Change the Property

Inspector to list mode if it isn’t already

and set the border of the field to 1.

Open the score window if it isn’t

already and double-click on the script

channel for frame 5. This will open the

script window with an exitFrame handler

filled in for you. Type into the frame to

make the movie loop here. We will be

adding more to this script later.

The next thing we have to do is set

the field member to clear its content

when the movie starts so the user is pre-

sented with a blank document. You don’t

absolutely have to do this, but it’s easier

than trying to remember to manually

clear the field member before you pub-

lish the movie. There are a couple of ways

word processor

Double-Clicking A Document

A professional projector makes it easier

by tom rockwell

t

9 • 2004 MXDJ.COM • 53

to do this. You can write a behavior and

attach it to the script to clear the cast

member on beginSprite. Or, do it on a

movie script on prepareMovie that runs

every time the movie is run. We’ll be

using on prepareMovie for some other

stuff later so let’s use that.

Open the script window and click on

the + to insert a new script. Type in:

on prepareMovie

member("content").text = ""

end

Open the Script tab in the Property

Inspector and make sure the Type drop

down menu is set to Movie.

Now if you run the movie, you’ll be

able to type into the field. Then, stop and

restart the movie and you’ll see the field

get cleared, leaving you with a fresh new

document.

Save The Document
Now that we have a document, we

need to be able to save it. Create a push

button by selecting Insert > Control >

Push Button. A blank button appears on

the stage with a flashing cursor. Type in

Save As and move the button to the bot-

tom left area of the stage below the con-

tent field. Select the button cast member

in the Cast window and click on the little

script icon either in the Cast window or in

the Member tab of the Property

Inspector. This will open the script win-

dow and create a script attached to the

member with a blank on mouseUp han-

dler. Type in the code from Figure 1.

This handler makes use of the FileIO

xtra that comes with Director, which is

used to read and write text files with

Lingo. Any xtra that reads and writes to

the user’s hard drive can be used in its

place, such as vList, BinaryIO, and others.

The first thing the handler does is cre-

ate an instance of the FileIO xtra to use.

Then it sets the filter mask to only allow

the user to work with documents created

with our program. It does this by defining

our custom document type. Our docu-

ment, although it will be nothing more

than a text file, will be a “MiniWord

Document.” We can’t just use a .txt file

since both Macintosh and Windows

already have programs to deal with those

kinds of documents. So, our documents

will have a .minw extension on Windows,

and a 'minW' file type on the Macintosh.

(More on that in a moment.)

Note that this is platform-specific code,

so I have an if...else statement to branch

out to whichever platform is hosting the

Director movie. This also allows you to

code once and publish for both platforms

without having to rewrite any of your

Lingo. (Syntax note: The _system.environ-

mentproplist.platform call is the new syn-

tax introduced in DirectorMX2004. If you’re

still using DirectorMX, you will need to

replace this item with the platform in

order to make the code work.)

Next, the handler calls displaySave,

which pulls up the standard OS save dia-

log box so the user can select where to

save the file and what to name it. This

function returns the full path to the doc-

ument the user wants to save, or an

empty string (Macintosh) or <Void>

(Windows) if the user hits Cancel. The

next thing we do is make sure the user

didn’t hit Cancel. If filePath is not an

fi
g

u
re

 1
fi

g
u

re
 2

54 • MXDJ.COM 9 • 2004

empty string then we can proceed. We

then create the file, open it, store the

string we got from the Content member,

write to the file, and close it.

On Windows, file types are specified

by a file extension such as .txt for text

files and .doc for Microsoft Word files.

These are tracked by the Windows

Registry, which associates these file

extensions with the proper application

and is why we set the filter mask above. If

the user forgets to add .minw to the file

name, the system will take care of it,

ensuring that the file keeps its program

association. We haven’t actually edited

the Windows Registry yet, so right now

the extension is meaningless, but we’ll

take care of that soon.

On the Macintosh file, types and asso-

ciations are traditionally marked in the

file itself in a section called the Resource

Fork. The file will have a four-character

identifier called a creator code. It is tradi-

tionally written in single quotes and tells

the operating system which application

it should use to open the document.

DirectorMX2004’s creator code is “MDO3”.

(Interesting that it’s not “MD04”). You can

pick any four-character code for your

application. I chose “MnWd” for our

MiniWord application. All ASCII charac-

ters are acceptable, including spaces and

special characters. So, if you want to

make your application’s code '#$!' that is

perfectly fine.

However, there are some rules, the

most important of which is that Apple

has reserved all lowercase-only codes for

internal use. This is why my application

code is “MnWd” and not “mnwd”. And

although it’s not required, Apple suggests

that you register your application code

with them at their developer site (http://

developer.apple.com/datatype/creator-

code.html). This is a good idea to make

sure nobody else is already using your

code. They used to require that you regis-

ter your file-type code as well, but they

no longer ask for that. The file-type code

is the same thing – a four-character code

that identifies the kind of file it is. Text

files are identified with “TEXT”; JPEG files

are marked as “JPEG.”This is why JPEGs

created with Photoshop will reopen in

Photoshop when you double-click on

them instead of opening in your Web

browser, as they do on Windows. Our

MiniWord application will create “minW”

files.

Run the movie, type something into

the content field, and hit Save to make

sure the document saves as expected.

Open The Document
Insert another push button and name

this one Open. Drag it down to the lower

right area of the stage next to the Save

As button. Select the cast member and

click on the script icon in either the script

window or the Property Inspector. Type

in the code as shown in Figure 2.

This code is very similar to the Save

As code. The main difference here is that

instead of calling displaySave, we call

displayOpen, which prompts the user to

select a file and returns its path. And

again, if the user hits Cancel, the path is

an empty string. If not, we open the file

specified by the user, read the whole file,

store the text we just read in the Content

member and close the file. That’s it. Here

the setFilterMask handler only displays

MiniWord files for the user to select. This

way your program doesn’t try to open

Word or Photoshop documents.

The next step is to associate our file

format with the application. This has to

be done separately for each platform.

The Mac Package
A package is simply a folder with a

certain hierarchy of sub-folders and files

that define how an application works.

When the root folder is named with a

.app extension the folder takes on the

application’s icon and acts like the appli-

cation itself. Since we have to make the

package manually the process is fairly

involved, so here are step by step instruc-

tions for creating your package.

1. Create a folder called MiniWord Mac.

This will be the folder that will act as

the application later.

2. Open the MiniWord Mac folder and

create a folder inside it called Contents.

The Contents folder will contain four

items. The first is a text file that con-

tains the creator code and file type for

our application. Applications always

have a file type of “APPL.” Since our

MiniWord application saves files in text

format we can just use that to gener-

ate this file.

3. In Director, play the movie and type

APPLMnWd into the content field. That

is the standard application file type, and

our custom creator code. Click Save As,

name the file PkgInfo (with no exten-

sion), and save it in the Contents folder.

4. Create a folder in the Contents folder

called MacOS.

fi
g

u
re

 3

fi
g

u
re

 4

 <?xml version="1.0" encoding="UTF-8" ?>

 <!DOCTYPE plist (View Source for full doctype...)>

- <plist version="1.0">

- <dict>

 <key>CFBundleDocumentTypes</key>

- <array>

- <dict>

 <key>CFBundleTypeExtensions</key>

- <array>

 <string>minw</string>

 </array>

 <key>CFBundleTypeName</key>

 <string>MiniWord Document File</string>

 <key>CFBundleTypeOSTypes</key>

- <array>

 <string>minW</string>

 </array>

 </dict>

 </array>

 <key>CFBundleExecutable</key>

 <string>miniword</string>

 <key>CFBundleName</key>

 <string>MiniWord</string>

 <key>CFBundlePackageType</key>

 <string>APPL</string>

 <key>CFBundleSignature</key>

 <string>MnWd</string>

 </dict>

 </plist>

5. Create another folder in the Contents

folder called Resources. We actually

won’t use the Resources folder for this

demonstration, but it’s a good idea to

create it anyway. This is where icon files

and other related items would go.

6. Find the Director application icon in

the Finder. If you have Director in the

dock, you can simply click and hold on

the icon and select Show In Finder.

Otherwise, navigate through your

Applications folder until you find the

Director application icon. It’s time to

take a look at Director’s package.

Control-click (or right-click if you have

a two-button mouse) on the applica-

tion icon and select Show Package

Contents from the pop-up menu that

appears. Open the Contents folder and

then open the MacOS folder.

7. Copy the following four files:

- MacromediaRuntimeLib

- ProjLib

- IMLLib

- DPLib

and paste them into your MacOS fold-

er. These are the Shockwave library

files. In order for your projector to run

inside a Package, it must be a

Shockwave projector. Shockwave pro-

jectors require that the user have the

Shockwave plug-in installed on their

system in order to run. Placing these

files in your MacOS folder (next to

where the projector will be) ensures

that your projector will run even if the

user doesn’t have Shockwave installed.

8. (Optional) In the MacOS folder, create

a folder called xtras. Place all the xtras

you used in your projector into this

folder. You’ll need to copy them from

the Director application folder. If you

don’t do this, make sure all the xtras

used in your movie are marked to be

included in the Projector. You’ll need to

explicitly add the FileIO xtra to your

movie under Modify > Movie > Xtras.

9. Publish your Director movie. In the

Publish Settings window in the

Projector tab, make sure that Player

Type is set to Shockwave. Save the pro-

jector to another folder elsewhere, not

into the MiniWord App folder. Once we

make this folder into a package, you

won’t be able to save to it directly and

we’ll be making more changes to the

Director file later. So save it some-

where else, and then move it into the

MacOS folder. This way, you’ll know

exactly where to find it when we pub-

lish it again. Be sure to copy your pub-

lished projector into the MacOS folder.

In the next step, we will create a file

called info.plist. This is an XML file that

explains how the application is set up

and describes many of its components.

The easiest way to create this file is

with Apple’s Property List Editor appli-

cation, which you can find on the

Developer Tools CD that comes with

OSX. If you don’t have this, you can use

a text editor to create the file, but it’s

very easy to make mistakes doing it

that way, and very difficult to find

them to fix them when something

doesn’t work. A finished info.plist file is

shown in Figure 3. If you don’t have

Property List Editor installed, skip

down to the next paragraph and copy

the XML data below exactly as you see

it using any text editor.

10. Launch Property List Editor.

- Click New Root.

- Turn down the Root arrow and click

New Child.

- Type in CFBundleDocumentType

and set the class to an Array. This

defines the file type.

- Turn down the

CFBundleDocumentTypes arrow

and click New Child. The program

automatically inserts an item num-

bered 0. Change its class to

Dictionary.

- Turn down item 0 and click New

Child.

- Type in CFBundleTypeExtensions

and change its class to an array.

- Turn down the arrow for

CFBundleTypeExtensions and click

New Child.

- In the value field for item 0 type in

minw, all lower case. This defines

the file extension for our docu-

ments.

- Close the CFBundleTypeExtensions

arrow and click New Sibling.

- Type in CFBundleTypeName and in

the value field type in MiniWord

Document File.

- Click New Sibling and type in

CFBundleTypeOSTypes and set it to

an array.

9 • 2004 MXDJ.COM • 55

Advertising Index

Advertiser URL Phone Page

2004 RCAs www.sys-con.com 888-303-5282 57

ActivePDF www.activePDF.com 11

CF_Underground VI www.cfconf.org/cf_underground6/ 301-424-3903 Cover 3

CFDynamics www.cfdynamics.com 866-233-9626 5

FuseTalk www.fusetalk.com 866-477-7542 48

HostMySite.com www.hostmysite.com/mxdj 877-248-4678 15

Information Storage+Security www.ISSJournal.com 888-303-5282 27

Interakt www.interaktonline.com 6

IT Solutions Guide www.sys-con.com 201-802-3021 31

Macromedia www.webpublishingsystem.com Cover 2

Max Macromedia www.macromedia.com/go/max Cover 4

Nidus Corp. www.brainstormer.org 37

Seapine Software www.seapine.com 888-683-6456 3

ServerSide www.serverside.net 888-682-2544 9

Web Services Edge 2005 www.sys-con.com/edge 201-802-3066 51

56 • MXDJ.COM 9 • 2004

- Turn down the CFBundleTypeOS-

Types arrow and click New Child.

- In the value for item 0 type minW.

This is our actual document type as

stored in the Resource Fork.

- Close the CFBundleDocumentTypes

arrow and click New Sibling

- Type in CFBundleExecutable and in

the value field type MiniWord.osx,

or whatever you named your pro-

jector. Make sure the name matches

exactly.

- Click New Sibling, type in

CFBundleName, and in the value

field type in MiniWord.

- Click New Sibling, type in

CFBundlePackageType and in the

value field type in APPL.

- Click New Sibling, type in

CFBundleSignature, and type in

MnWd. This tells the operating sys-

tem that this is our application's cre-

ator code.

Many other items can be defined here,

but this is all that is necessary to make our

project work. The final file should look like

Figure 1. Make sure it matches, and then

save the document as info.plist and place

it in the Contents folder.

If you don’t have Property List Editor

installed, you can create the file manually

with a text editor. Type in the XML exactly

as you see it in Figure 4.

11. Navigate back to the MiniWorld Mac

folder and rename it to MiniWorld

Mac.app. You will get an alert to warn

you about changing the extension.

Click Add to add the extension. If

everything is set up right, the folder

icon will change to a generic applica-

tion icon. Or, if you published your

projector with a custom icon the fold-

er will take on that icon.

At this point, if you double-click on

the MiniWorld Mac folder it will no longer

open to reveal its contents, but instead

will launch your projector. Additionally, if

you double-click on a saved document

that MiniWord created, it will also launch

the projector, but it still won’t open the

file. We still have to add code to handle

that.

The Windows Registry
Associating our file types with the

Windows operating system isn’t nearly as

involved as it is on the Macintosh.

However, it’s also not something that can

be done natively in Director or with

another program. The first time your pro-

gram runs, it needs to edit the user's

Registry file to make everything work. In

order to do this, we will need a third

party xtra. This example makes use of the

BuddyAPI xtra (www.mods.com.au), but

any xtra that can work with the user’s

registry will work. Check the documenta-

tion for the specific syntax you’ll need

with other xtras.

Ideally, your program will only write

to the user’s Registry once. That means

your program would need to keep track

of the fact with a preferences file or some

similar method. Saving preferences files is

beyond the scope of this article so for

now we will do all our work on

prepareMovie. This will run every time

the program is launched, which is not

ideal but will do for the purposes of

instruction.

In your movie script in the on

prepareMovie handler, add a call to a

handler called editWindowsRegistry so

the whole handler now looks like this:

on prepareMovie

member("content").text = ""

editWindowsRegistryEditWindowsRegistry

()

end

Now we need to define this handler.

Type in the code as shown in Figure 5.

The next time your movie is run, it will

modify your Registry to associate the file

types with your application. At this point,

double-clicking on a saved document

will launch your projector but will not

open it for the same reason as for the

Mac – we haven’t yet added the code to

handle that.

Opening The Files That
Were Double-Clicked

Now that our program is being

launched, when the user double-clicks

fi
g

u
re

 6
fi

g
u

re
 5

“Director projector can create
any type of document and write

it to the user’s hard disk”

9 • 2004 MXDJ.COM • 57

on a file, we need to figure out which file

the user clicked on and open it. We can

do this with an undocumented system

variable called the commandLine. This

variable takes the form of an apostrophe-

delimited string. The second-to-last item

in the string is the path to the file the

user clicked on. The string ends with an

empty item, which is why we want the

second-to-last item.

Not only does the program launch

when the user double-clicks on a docu-

ment, but if the application is already

running, it is brought to the front. So our

program needs to periodically check the

commandLine to see if it has changed. If

it has, we need to open the new docu-

ment. To do this, we'll create a global

variable called myCommandLine and ini-

tialize it to an empty string. So let’s modi-

fy our on prepareMovie handler to

accommodate this.

global myCommandline

on prepareMovie

member("content").text = ""

myCommandline = ""

editWindowsRegistry

end

If the user launched your program

normally, then the commandLine will

return an empty string, which matches

myCommandline. So all we have to do is

see if the commandLine has changed,

and since we have to do this periodically,

we’ll just do it on the exitFrame handler

we have running on frame 5.

global myCommandline

on exitFrame me

-- Check to see if the commandLine

has changed.

if the commandLine <> myCommandline

then

-- Open the file specified by the

commandLine.

openThisDocument()

end if

go the frame

end

Checking the status of the

commandLine of every frame is usually

not necessary. And certainly, if you’re

authoring a game, you don’t want to take

a speed hit by doing an unnecessary

check every frame. I'd suggest only

checking on the title screen or some

other relatively calm screen.

The openThisDocument handler

will now get called whenever the

commandLine changes, which happens

whenever a user double-clicks on a

saved document that is associated with

your application. It’s structure is very

similar to the code we attached to the

Open button, but instead of prompting

the user to select a file it simply uses the

commandLine to find the file. In the

movie script, type in the code from

Figure 6.

This code is the same as the open

code, except for the section at

the top that gets the path from

the commandLine. The way that

works is that it first saves what

the current itemDelimiter is in a

local variable so we can restore

it later. Then, it sets the

itemDelimiter to an apostrophe

and reads the entire

commandLine. Then, it gets the

index number of the second-to-

last item in the list and uses that

to determine the filepath of the

document that was double-

clicked. Finally, it restores the

itemDelimiter to its default value.

This is the last step in making the pro-

gram work. Publish your movie again. If

you’re on a Mac, be sure to place the pro-

jector in the MacOS folder in your pack-

age. Double-click a saved document and

it will launch your projector and open the

document. Double-click another file and

it will bring your program to the front

and open that one.

Conclusion
You have seen how to make your pro-

jector behave like a professional applica-

tion. All you have to do now is apply this

technique to your own Director projects,

and then sit back and wait for the share-

ware fees to come rolling in.

Tom Rockwell studied illustration at

Rochester Institute of Technology and

taught himself how to program in his

spare time in an effort to create his own

video games. He eventually settled on

Director as his development environ-

ment of choice for video games and how

has a successful career as a multimedia

developer for a training company in New

Jersey. He still programs video games in

his spare time and sells them through his

shareware company FIDIM Interactive,

LLC. (www.fidim.com)

spice@suddendeath.org

58 • MXDJ.COM 9 • 2004

va
n

g
u

a
rd

his Web site is an apology to velvet, meat, and pornography.

1. Grow up in Colombia, the most insane, surrealistic country.

2. Move to France (the paradise of royal-pork-butchery).

3. Give a value to such a thing.

4. Make a lot of paintings and drawings of it.

5. Create a 3D character (with Cinema4D) that represents

your own values (a pig).

6. Create a nice layout with textures, shadows, and effects

(use Photoshop and Illustrator).

7. Shake vigorously into Flash MX to make it

move and live.

Bon appétit!!!

How to Build a
www.fernando-nieto.com

t

